Skip to main content

David Gochis

thumbnail
Models that predict the flow of rivers and streams are critically important for planning flood control, hydropower, and reservoir operations, as well as for management of fish and wildlife populations. As temperatures and precipitation regimes change globally, the need to improve and develop these models for a wider spatial coverage and higher spatial fidelity becomes more imperative. Currently, one of the biggest impediments to developing robust streamflow knowledge is incomplete understanding of the range of timescales over which water is stored (e.g., in snowpack, soils, and groundwater) in watersheds, as well as the processes and factors that control those storage timescales. This working group will address...
thumbnail
Groundwater withdrawals in the western US are a critical component of the water resources strategy for the region. Climate change already may be substantially altering recharge into groundwater systems; however, the quantity and direction (increase or decrease) of changes are relatively unknown as most climate change assessments have focused on surface water systems. We propose to conduct a broad scale literature review followed by a synthesis of available data, analysis and simulations with available downscaled climate scenarios to understand how recharge in the western US might respond to plausible climatic shifts during the rest of the 21st Century. We will produce an estimated range of impacts on groundwater...
This project brings existing, operationally ready technology to bear on the very real problem of seasonal streamflow prediction and water resources management under Inter-state compact constraints. As discussed below the technology is cost-effective compared to other research platforms and provides many ancillary benefits to other applications such as flash flood prediction in complex terrain and runoff processes in fire-burned landscapes.
This reports summarizes work and key findings to date from the Upper RIO Grande Basin SNOwfall Measurement and streamFLOW (RIO-SNO-FLOW) Forecasting Improvement Project conducted from Jan. 1, 2014 through Dec. 31, 2015. The project area was centered over the upper mainstem Rio Grande and Conejos River basins in southern Colorado. This report is organized into 7 chapters that detail the major elements of the project including; a Project Description, NOAA Gap-filling Radar, NASA Airborne Snow Observatory, In-Situ Ground Observations, Distributed Hydrologic Modeling, and Community Engagement. While several follow-on activities are still in progress, a number of conclusions and recommendations have emerged from the...
thumbnail
Abstract Groundwater is a major source of water in the western US. However, there are limited recharge estimates in this region due to the complexity of recharge processes and the challenge of direct observations. Land surface Models (LSMs) could be a valuable tool for estimating current recharge and projecting changes due to future climate change. In this study, simulations of three LSMs (Noah, Mosaic and VIC) obtained from the North American Land Data Assimilation System (NLDAS-2) are used to estimate potential recharge in the western US. Modeled recharge was compared with published recharge estimates for several aquifers in the region. Annual recharge to precipitation ratios across the study basins varied from...
Categories: Publication; Types: Citation
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.