Skip to main content

Kelsey Brock

thumbnail
This product used species distribution modeling (SDM) to model the geographic distribution fire promoting grasses across the islands of Hawaii under both current climate conditions and under future climate change scenarios (RCP 8.5 at year 2100). The RCP 8.5 scenario assumes unmitigated and continued release of greenhouse grasses and continued human population growth. Six species of well established and widely distributed grasses (Andropogon virginicus (broomsedge), Cenchrus ciliaris (buffelgrass), Cenchrus setaceus (fountain grass), Megathyrus maximus (guinea grass, Urochloa maxima, Pancicum maximum), Melinis minutiflora (mollasses grass), and Schizachyrium microstachyum (formerly referred to as S. condensatum...
thumbnail
Previous research identified species of invasive plants in Hawai'i which are highly flammable and act as fuels in wildfires across Hawai'i. This work aimed to map the distribution of these species (largely grasses) around the islands of Hawai'i with the goal of using the locations for species distribution modeling. All data represents presence data, no absence data were recorded. Data are largely from within the past 20 years, but some georeferenced herbarium specimens go as far back as 1905. Data were obtained from georeferenced herbarium specimens, vegetation plot data, citizen science data (iNaturalist) reviewed by the authors, and data from roadside surveys conducted as part of this research to map these species....
thumbnail
Invasions of exotic annual grasses (EAGs like cheatgrass have caused major losses of native shrubs and grasses in western U.S. rangelands. They also decrease the productivity and carbon storage in these ecosystems, which is expected to create dryer soils that may cause further losses in plant productivity. This cycle is the hallmark of desertification – or, fertile lands turning into deserts. Management actions that target EAGs are one of the most widespread land management actions taken in Western U.S. rangelands, but it is unclear which specific actions can simultaneously enhance drought resilience of native plant communities and increase carbon sequestration and storage. This project aims to identify the restoration...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.