Skip to main content

Leslie L Duncan

thumbnail
The U.S. Geological Survey (USGS), in cooperation with the Harris-Galveston Subsidence District and Fort Bend Subsidence District, constructed a finite-difference numerical groundwater-flow model of the northern Gulf Coast aquifer region for 1897 through 2018 using MODFLOW 6 with the Newton formulation solver to simulate groundwater flow and land-surface subsidence. Model parameter estimation and uncertainty analysis were conducted with PEST++ Iterative Ensemble Smoother software. The simulated results are described in the associated U.S. Geological Survey Professional Paper 1877. The model archive provided in this U.S. Geological Survey data release includes all the necessary files to run the MODFLOW 6 model and...
thumbnail
Note: this data release has been deprecated. Please see new data release here: https://doi.org/10.5066/P9PEFY11. The U.S. Geological Survey (USGS) undertook a 5-year study beginning in 2016 to assess groundwater availability for the aquifers proximal to the Gulf of Mexico from the Texas-Mexico border to the western part of the panhandle of Florida; these aquifers are collectively referred to as the coastal lowlands aquifer system. This study is one of several regional groundwater availability studies being done as part of the USGS Water Availability and Use Science Program. Groundwater from the coastal lowlands aquifer system is used mainly for public, irrigation, and industrial supply. Land-surface subsidence...
thumbnail
This model archive contains the model files for the MERAS 3 and Mississippi Delta groundwater flow models documented in the U.S. Geological Survey Scientific Investigations Report 2023-5100. The MERAS 3 model provides a simplified representation of groundwater flow in the Mississippi Embayment Regional Aquifer Study (MERAS) area for the period of 1900 through 2018, with the primary goal of providing boundary fluxes for inset models focused on local areas of interest. The Mississippi Delta model simulates groundwater flow in the Delta region of northwestern Mississippi from 1900 through 2018, using boundary fluxes from the MERAS 3 model. A scenario version of the Mississippi Delta model extends the simulation to...
This text file (Reference_List_V1.txt) lists references that describe relevant characteristics for reservoir thermal energy storage (RTES) research in the United States. References are grouped by corresponding city, including: Albuquerque, New Mexico; Charleston, South Carolina; Chicago, Illinois; Decatur, Illinois; Lansing, Michigan; Memphis, Tennessee; Phoenix, Arizona; and Portland, Oregon. The document includes hyphenated lines and headers to distinguish city-specific subsections. Internet links are provided for each reference in the event that the reference was accessible online (as of January 28, 2021).
thumbnail
The existing three-dimensional groundwater flow model (MODFLOW-2005) of the Mississippi Embayment Regional Aquifer system (MERAS), South-Central United States, was updated with: 1) higher stream density; 2) more spatially refined recharge; 3) better estimates of water use; 4) more recent time period simulated; 5) more realistic storage conceptualization; and 6) more robust handling of dry nodes through use of MODFLOW-NWT. For this study, the MODFLOW-NWT groundwater flow model was used to evaluate four parameter estimation algorithms with lower computational burdens. This work was performed to update the previous version of the MERAS groundwater flow model for decision making in the Mississippi Alluvial Plain (MAP),...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.