Skip to main content

Malcolm G. Butler, Ph.D

thumbnail
Arctic wetlands, where millions of local and migratory birds nest, are composed of a mosaic of ice wedge polygons, non-patterned tundra, and large vegetated drained thaw lake basins. Regional climate projections suggest that evapotranspiration, rainfall, and snowfall will increase, making it difficult to predict how surface water distribution might change and how habitats for the invertebrate resources used by waterbirds will be impacted. This study will focus on evaluating how climate change will affect the invertebrate community, and whether the change in climate (through changes in hydrology and surface energy balance) could induce a trophic mismatch that might alter the growth and survival of shorebird young....
thumbnail
We assessed change in the seasonal timing of insect emergence from tundra ponds near Barrow, Alaska over a four-decade timespan, and explored factors that regulate this significant ecological phenomenon. The early-summer pulse of adult insects emerging from myriad tundra ponds on the Arctic Coastal Plain is an annual event historically coincident with resource demand by tundra-nesting avian consumers. Asymmetrical changes in the seasonal timing of prey availability and consumer needs may impact arctic-breeding shorebirds, eiders, and passerines. We have found evidence of change in the thermal behavior of these arctic wetlands, along with a shift in the phenology of emerging pond insects. Relative to the 1970s, tundra...
thumbnail
To better understand and predict effects of climate change on wetlands, invertebrates and shorebirds, the ‘CEWISH’ group,composed of Cryohydrology, Invertebrate, Shorebird Food Use, and Shorebird/Population Modeling teams, collected fielddata at Barrow, Alaska, between May and September 2014–2015. The Cryohydrology team measured end-of-wintersnow accumulation, snowmelt at the landscape scale, pond water levels, and pond water and sediment temperatures. TheInvertebrate team monitored emergence at historic ponds, and documented emergence rates of dominant chironomid taxaunder different experimentally controlled thermal regimes. The Shorebird Food Use team developed a DNA library ofpotential prey items using samples...
thumbnail
We assessed change in the seasonal timing of insect emergence from tundra ponds near Barrow, Alaskaover a four-decade timespan, and explored factors that regulate this significant ecological phenomenon.The early-summer pulse of adult insects emerging from myriad tundra ponds on the Arctic Coastal Plainis an annual event historically coincident with resource demand by tundra-nesting avian consumers.Asymmetrical changes in the seasonal timing of prey availability and consumer needs may impact arcticbreedingshorebirds, eiders, and passerines. We have found evidence of change in the thermal behaviorof these arctic wetlands, along with a shift in the phenology of emerging pond insects. Relative to the1970s, tundra ponds...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.