Skip to main content

Nick Haddad

Climate change is already affecting biodiversity, in particular shifting the ranges of species as they move to cooler places. One problem for wildlife as their ranges shift is that their path is often impeded by habitat fragmentation. Because of this, the most common recommended strategy to protect wildlife as climate changes is to connect their habitats, providing them safe passage. In partnership with South Atlantic LCC members, we previously assessed current and projected connectivity for three species (black bear [Ursus americanus], Rafinesque’s bigā€eared bat [Corynorhinus rafinesquii], timber rattlesnake [Crotalus horridus]) that inhabit bottomland hardwoods throughout the southeastern US. We observed large...
thumbnail
Climate in the southeastern U.S. is predicted to be changing at a slower rate than other parts of North America; however, land use change associated with urbanization is having a significant effect on wildlife populations and habitat availability. We sought to understand the effect of global warming on both beneficial and pest insects of trees. We used urban warming as a proxy for global warming in as much as many cities have already warmed as much, due to heat island effects, as they are expected to warm due to climate change by 2050 or even 2100. We were able to develop good predictive models of how warming influences beneficial and pest insects for cities in the Southeast and across the east coast more generally....
thumbnail
In the Southeast, where rapid human development is increasingly dividing natural areas, habitat fragmentation and loss threaten the health and even genetic viability of wildlife populations, and interrupt migration routes. Climate change is projected to exacerbate fragmentation by further disrupting landscapes. To make matters worse, it is also expected to shift the range of many species, forcing animals capable of adapting by moving to expand into new areas to find more suitable temperatures and adequate food supplies – a challenge made difficult, if not impossible, by disconnected landscapes. Maintaining connectivity between habitats is a key strategy for conserving wildlife populations into the future, and sound...
Climate change is already affecting biodiversity, in particular shifting the ranges of species as they move to cooler places. One problem for wildlife as their ranges shift is that their path is often impeded by habitat fragmentation. Because of this, the most common recommended strategy to protect wildlife as climate changes is to connect their habitats, providing them safe passage. There are great challenges to implementing this strategy in the southeastern US, however, because most intervening lands between habitat patches are held in private ownership. In partnership with South Atlantic LCC members, we assessed current and projected connectivity for three species that inhabit bottomland hardwoods throughout...
Abstract (from Climate Change Ecology): Predicting how species respond to changes in climate is critical to conserving biodiversity. Modeling efforts to date have largely centered on predicting the effects of warming temperatures on temperate species phenology. In and near the tropics, the effects of a warming planet on species phenology are more likely to be driven by changes in the seasonal precipitation cycle rather than temperature. To demonstrate the importance of considering precipitation-driven phenology in ecological studies, we present a case study wherein we construct a mechanistic population model for a rare subtropical butterfly (Miami blue butterfly, Cyclargus thomasi bethunebakeri) and use a suite...
Categories: Publication; Types: Citation
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.