Skip to main content

Wendy Loya, PhD

thumbnail
There is a great deal of interest in whether and how Alaska’s precipitation is changing but little agreement in the existing peer-reviewed literature. To provide insight on this question, we have selected three commonly used 0.5° resolution gridded precipitation products that have long-term monthly data coverage (Climatic Research Unit TS3.10.1, Global Precipitation Climatology Centre Full Data Reanalysis version 5, and University of Delaware version 2.01) and evaluated their homogeneity and trends with multiple methods over two periods, 1950–2008 and 1980–2008. All three data sets displayed common broadscale features of Alaska’s precipitation climatology, but there were substantial differences between them in terms...
thumbnail
There are many challenges in detecting precipitation trends in Alaska. The most substantial are the small number of observations, inhomogeneities, differences among gridded data sets, and differentiating between long-term trends and decadal variability. Analyzing both station and regional products will increase our understanding of where local trends in precipitation may differ significantly from regional trends, providing key information for developing better downscaled climate projections. These in turn, will provide insight into fine scale heterogeneity in climate change that may be important in determining the stability of key habitat features, such as wetlands and insect avoidance areas. As a by-product of...
thumbnail
Arctic wetlands, where millions of local and migratory birds nest, are composed of a mosaic of ice wedge polygons, non-patterned tundra, and large vegetated drained thaw lake basins. Regional climate projections suggest that evapotranspiration, rainfall, and snowfall will increase, making it difficult to predict how surface water distribution might change and how habitats for the invertebrate resources used by waterbirds will be impacted. This study will focus on evaluating how climate change will affect the invertebrate community, and whether the change in climate (through changes in hydrology and surface energy balance) could induce a trophic mismatch that might alter the growth and survival of shorebird young....
thumbnail
Numerous studies have evaluated precipitation trends in Alaska and come to different conclusions. These studies differ in analysis period and methodology and do not address the issue of temporal homogeneity. To reconcile these conflicting results, we selected 29 stations with largely complete monthly records, screened them for homogeneity, and then evaluated trend over two analysis periods (1950–2010 and 1980–2010) using three methods: least absolute deviation regression, ordinary least squares regression (with and without transformation), and Mann-Kendall trend testing following removal of first-order autocorrelation. We found that differences in analytical period had a significant impact on trends and that the...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.