Relations between basin characteristics and stream water chemistry in alpine/subalpine basins in Rocky Mountain National Park, Colorado
Citation
Julie K Sueker, and David W Clow, Relations between basin characteristics and stream water chemistry in alpine/subalpine basins in Rocky Mountain National Park, Colorado: .
Summary
Relations between stream water chemistry and topographic, vegetative, and geologic characteristics of basins were evaluated for nine alpine/subalpine basins in Rocky Mountain National Park, Colorado, to identify controlling parameters and to better understand processes governing patterns in stream water chemistry. Fractional amounts of steep slopes (≥30°), unvegetated terrain, and young surficial debris within each basin were positively correlated to each other. These terrain features, which commonly occur on steep valley side slopes underlain by talus, were negatively correlated with concentrations of base cations, silica, and alkalinity and were positively correlated with nitrate, acidity, and runoff. These relations might result [...]
Summary
Relations between stream water chemistry and topographic, vegetative, and geologic characteristics of basins were evaluated for nine alpine/subalpine basins in Rocky Mountain National Park, Colorado, to identify controlling parameters and to better understand processes governing patterns in stream water chemistry. Fractional amounts of steep slopes (≥30°), unvegetated terrain, and young surficial debris within each basin were positively correlated to each other. These terrain features, which commonly occur on steep valley side slopes underlain by talus, were negatively correlated with concentrations of base cations, silica, and alkalinity and were positively correlated with nitrate, acidity, and runoff. These relations might result from the short residence times of water and limited soil development in the talus environment, which limit chemical weathering and nitrogen uptake. Steep, unvegetated terrains also tend to promote high Ca/Na ratios in stream water, probably because physical weathering rates in those areas are high. Physical weathering exposes fresh bedrock that contains interstitial calcite, which weathers relatively quickly. The fractional amounts of subalpine meadow and, to a lesser extent, old surficial debris in the basins were positively correlated to concentrations of weathering products and were negatively correlated to nitrate and acidity. These relations may reflect more opportunities for silicate weathering and nitrogen uptake in the lower-energy environments of the valley floor, where soils are finer-grained, older, and better developed and slopes are relatively flat. These results indicate that in alpine/subalpine basins, slope, vegetation (or lack thereof), and distribution and age of surficial materials are interrelated and can have major effects on stream water chemistry.
Published in Water Resources Research, volume 36, issue 1, on pages 49 - 49, in 2000.