Data for Radium Mobility and the Age of Groundwater in Public-drinking-water Supplies from the Cambrian-Ordovician Aquifer System, North-Central USA
Dates
Publication Date
2017-12-07
Start Date
2014-03-26
End Date
2014-10-01
Citation
Jurgens, Bryant, Stackelberg, P.E., and Szabo, Zoltan, 2017, Data for Radium Mobility and the Age of Groundwater in Public-drinking-water Supplies from the Cambrian-Ordovician Aquifer System, North-Central USA: U.S. Geological Survey data release, https://doi.org/10.5066/F7BR8QP0.
Summary
High radium (Ra) concentrations in potable portions of the Cambrian-Ordovician (C-O) aquifer system were investigated using water-quality data and environmental tracers ( 3H, 3Hetrit, SF6 , 14C and 4Herad) of groundwater age from 80 public-supply wells (PSWs). Groundwater ages were estimated by calibration of tracers to lumped parameter models and ranged from modern (1 Myr) in the most downgradient, confined portions of the potable system. More than 80 and 40 percent of mean groundwater ages were older than 1000 and 50,000 yr, respectively. Anoxic, Fe-reducing conditions and increased mineralization develop with time in the aquifer system and mobilize Ra into solution resulting in the frequent occurrence of combined Ra (Rac = 226Ra [...]
Summary
High radium (Ra) concentrations in potable portions of the Cambrian-Ordovician (C-O) aquifer system were investigated using water-quality data and environmental tracers ( 3H, 3Hetrit, SF6 , 14C and 4Herad) of groundwater age from 80 public-supply wells (PSWs). Groundwater ages were estimated by calibration of tracers to lumped parameter models and ranged from modern (1 Myr) in the most downgradient, confined portions of the potable system. More than 80 and 40 percent of mean groundwater ages were older than 1000 and 50,000 yr, respectively. Anoxic, Fe-reducing conditions and increased mineralization develop with time in the aquifer system and mobilize Ra into solution resulting in the frequent occurrence of combined Ra (Rac = 226Ra + 228Ra) at concentrations exceeding the USEPA MCL of 185 mBq/L (5 pCi/L). The distribution of the three Ra isotopes comprising total Ra (Rat = 224Ra + 226Ra + 228Ra) differed across the aquifer system. The concentrations of 224Ra and 228Ra were strongly correlated and comprised a larger proportion of the Rat concentration in samples from the regionally unconfined area, where arkosic sandstones provide an enhanced source for progeny from the 232Th decay series. 226Ra comprised a larger proportion of the Rat concentration in samples from downgradient confined regions. Concentrations of Rat were significantly greater in samples from the regionally confined area of the aquifer system because of the increase in 226Ra concentrations there as compared to the regionally unconfined area. 226Ra distribution coefficients decreased substantially with anoxic conditions and increasing ionic strength of groundwater (mineralization), indicating that Ra is mobilized to solution from solid phases of the aquifer as sorption capacity is diminished. The amount of 226Ra released from solid phases by alpha-recoil mechanisms and retained in solution increases relative to the amount of Ra sequestered by adsorption processes or co-precipitation with barite as sorption capacity and the concentration of Ba decreases. Although 226Ra occurred at concentrations greater than 224Ra or 228Ra, the ingestion exposure risk was greater for 228Ra owing to its greater toxicity. In addition, 224Ra added substantial alpha-particle radioactivity to potable samples from the C-O aquifer system. Thus, monitoring for Ra isotopes and gross-alpha-activity (GAA) is important in upgradient, regionally unconfined areas as downgradient, and GAA measurements made within 72 h of sample collection would best capture alpha-particle radiation from the short-lived 224Ra.
Click on title to download individual files attached to this item.
CamOrd_Radium_General_Metadata.xml “Metadata” Original FGDC Metadata
View
44.92 KB
application/fgdc+xml
Related External Resources
Type: Related Primary Publication
Stackelberg, P.E., Szabo, Zoltan, and Jurgens, Bryant, 2017, Radium mobility and the age of groundwater in public-drinking-water supplies from the Cambrian-Ordovician aquifer system, north-central USA: Applied Geochemistry, v. 89, p. 34-48, https://doi.org/10.1016/j.apgeochem.2017.11.002.
Samples for dissolved gases and environmental tracers were collected from drinking-water wells that withdraw water from the Cambrian-Ordovician in 2014 to understand the age and vulnerability of the aquifer to natural and anthropogenic contaminants. For more information about the data collection and interpretation of dissolved gases and groundwater age, please read the process steps listed in the metadata (xml) files and the journal article associated with this data release.