Final Report: Characterizing Historic Streamflow to Support Drought Planning in the Upper Missouri River Basin
Dates
Acquisition
2023-01-23
Publication Date
2023-01-25
Citation
Gregory T Pederson, 2023-01-25, Final Report: Characterizing Historic Streamflow to Support Drought Planning in the Upper Missouri River Basin: .
Summary
This project combined tree-ring based paleo and modern climate and hydrologic research aimed at understanding the primary influences on drought risk and water reliability in basins critical for western U.S. water resources. New paleohydrologic datasets and analyses were developed and applied to contextualize future streamflow projections and address specific water management questions. These questions centered around optimizing future water management protocols for numerous objectives ranging from improving agricultural water allocation during drought while maintaining instream flows for aquatic ecosystem health to the testing of operations across large river systems with complex infrastructure critical for downstream flood control, [...]
Summary
This project combined tree-ring based paleo and modern climate and hydrologic research aimed at understanding the primary influences on drought risk and water reliability in basins critical for western U.S. water resources. New paleohydrologic datasets and analyses were developed and applied to contextualize future streamflow projections and address specific water management questions. These questions centered around optimizing future water management protocols for numerous objectives ranging from improving agricultural water allocation during drought while maintaining instream flows for aquatic ecosystem health to the testing of operations across large river systems with complex infrastructure critical for downstream flood control, navigation, and hydropower generation. USGS scientists worked closely with the Bureau of Reclamation (Reclamation) to estimate both past and future drought risk at key management locations throughout the Missouri River basin, the Milk and Saint Mary Rivers system, and across the major managed river systems in the western United States. These efforts provided a roadmap for future water management strategies under changing climate and water supply conditions, which are detailed in Reclamation’s newly completed Missouri Headwaters Basin Study, the 2021 SECURE Water Act Report, and the forthcoming update of the Saint Mary and Milk Rivers Basin Study. Among the major scientific findings to emerge was a new understanding of the long-term (1200-year) history of drought variability for the Missouri River, which highlighted the unusual severity of the early 2000s drought across the Rocky Mountain headwaters and adjacent high plains. By combining the extended drought record with extensive modern and paleoclimate records, we document how warming exacerbates severities of naturally occurring droughts, with recent decades defined by “hot” droughts and the 2000s (2001-2010) drought ranking as the most severe event in 1,200 years. Increasingly severe drought events such as this strain already over-allocated water resources that multiple sectors of society depend heavily upon.