HYDROLOGICAL MODELING OF THE IROQUOIS RIVER WATERSHED USING HSPF AND SWAT
Dates
Year
2004
Citation
Singh, J., Knapp, H.V., Arnold, JG, and Demissie, M., 2004, HYDROLOGICAL MODELING OF THE IROQUOIS RIVER WATERSHED USING HSPF AND SWAT: JAWRA Journal of the American Water Resources Association, v. 41, no. 2, p. 343-360.
Summary
The performance of two popular watershed scale simulation models – HSPF and SWAT – were evaluated for simulating the hydrology of the 5,568 km2 Iroquois River watershed in Illinois and Indiana. This large, tile drained agricultural watershed provides distinctly different conditions for model comparison in contrast to previous studies. Both models were calibrated for a nine-year period (1987 through 1995) and verified using an independent 15-year period (1972 through 1986) by comparing simulated and observed daily, monthly, and annual streamflow. The characteristics of simulated flows from both models are mostly similar to each other and to observed flows, particularly for the calibration results. SWAT predicts flows slightly better [...]
Summary
The performance of two popular watershed scale simulation models – HSPF and SWAT – were evaluated for simulating the hydrology of the 5,568 km2 Iroquois River watershed in Illinois and Indiana. This large, tile drained agricultural watershed provides distinctly different conditions for model comparison in contrast to previous studies. Both models were calibrated for a nine-year period (1987 through 1995) and verified using an independent 15-year period (1972 through 1986) by comparing simulated and observed daily, monthly, and annual streamflow. The characteristics of simulated flows from both models are mostly similar to each other and to observed flows, particularly for the calibration results. SWAT predicts flows slightly better than HSPF for the verification period, with the primary advantage being better simulation of low flows. A noticeable difference in the models’ hydrologic simulation relates to the estimation of potential evapotranspiration (PET). Comparatively low PET values provided as input to HSPF from the BASINS 3.0 database may be a factor in HSPF’s overestimation of low flows. Another factor affecting baseflow simulation is the presence of tile drains in the watershed. HSPF parameters can be adjusted to indirectly account for the faster subsurface flow associated with tile drains, but there is no specific tile drainage component in HSPF as there is in SWAT. Continued comparative studies such as this, under a variety of hydrologic conditions and watershed scales, provide needed guidance to potential users in model selection and application.