From forest to tundra: historical biogeography, floristic diversity and nucleotide variation in balsam poplar
Dates
Year
2010
Citation
Breen, Amy L., 2010, From forest to tundra: historical biogeography, floristic diversity and nucleotide variation in balsam poplar: University of Alaska Fairbanks.
Summary
The North America boreal forest extends across more than 10° of latitude from central Labrador to interior Alaska. Periods of major climate fluctuations, including glacial and interglacial cycles, drove major migrations in the Quaternary history of the boreal forest. Beringia, the unglaciated region between the Lena and Mackenzie rivers, is recognized as an important refugium for arctic plants during the last ice age, but its role for boreal trees remains controversial. The paleobotanical record indicates Populus balsamifera (balsam poplar) survived within Beringia during the last glacial. My research employed an interdisciplinary approach, combining techniques in the fields of ecology, evolution and population genetics, to reconstruct [...]
Summary
The North America boreal forest extends across more than 10° of latitude from central Labrador to interior Alaska. Periods of major climate fluctuations, including glacial and interglacial cycles, drove major migrations in the Quaternary history of the boreal forest. Beringia, the unglaciated region between the Lena and Mackenzie rivers, is recognized as an important refugium for arctic plants during the last ice age, but its role for boreal trees remains controversial. The paleobotanical record indicates Populus balsamifera (balsam poplar) survived within Beringia during the last glacial. My research employed an interdisciplinary approach, combining techniques in the fields of ecology, evolution and population genetics, to reconstruct the late Quaternary migration history of balsam poplar and to describe and classify balsam poplar plant communities in the Alaskan Arctic. Chapter 1 describes the motivation for the research. Chapter 2 addresses whether a demographically-detectable population of balsam poplar was present within Beringia during the most recent ice age. I found that patterns of variation in chloroplast DNA are most consistent with the presence of a single population of balsam poplar south of the continental ice sheets through the Late Quaternary. Chapter 3 is an analysis of floristic diversity in balsam poplar communities across the Arctic Slope, Interior Alaska and the Yukon Territory and asks whether one balsam poplar-associated plant community spans the arctic and boreal regions, or if these communities differ. I found that arctic communities are dominated by arctic-alpine taxa, whereas boreal communities are dominated by boreal taxa. A strong linkage between climate and the occurrence of balsam poplar also was observed on the Arctic Slope. Chapter 4 is a study of nucleotide diversity in three nuclear loci across the range of balsam poplar. This was the first study to document geographic structure in genetic variation within the species. It also showed that diversity in three North American poplars ( P. balsamifera , P. deltoides and P. trichocarpa ) was substantially less than that of three Eurasian poplars (P. alba , P. nigra and P. tremula ). Chapter 5 summarizes the research and points toward future research directions.