Process-guided deep learning water temperature predictions: 6 Model evaluation (test data and RMSE)
Dates
Publication Date
2019-11-13
Start Date
1980-04-01
End Date
2018-12-31
Citation
Read, J.S., Jia, X., Willard, J., Appling, A.P., Zwart, J.A., Oliver, S.K., Karpatne, A., Hansen, G.J.A., Hanson, P.C., Watkins, W., Steinbach, M., and Kumar, V., 2019, Data release: Process-guided deep learning predictions of lake water temperature: U.S. Geological Survey data release, https://doi.org/10.5066/P9AQPIVD.
Summary
This dataset includes evaluation data ("test" data) and performance metrics for water temperature predictions from multiple modeling frameworks. Process-Based (PB) models were configured and calibrated with training data to reduce root-mean squared error. Uncalibrated models used default configurations (PB0; see Winslow et al. 2016 for details) and no parameters were adjusted according to model fit with observations. Deep Learning (DL) models were Long Short-Term Memory artificial recurrent neural network models which used training data to adjust model structure and weights for temperature predictions (Jia et al. 2019). Process-Guided Deep Learning (PGDL) models were DL models with an added physical constraint for energy conservation [...]
Summary
This dataset includes evaluation data ("test" data) and performance metrics for water temperature predictions from multiple modeling frameworks. Process-Based (PB) models were configured and calibrated with training data to reduce root-mean squared error. Uncalibrated models used default configurations (PB0; see Winslow et al. 2016 for details) and no parameters were adjusted according to model fit with observations. Deep Learning (DL) models were Long Short-Term Memory artificial recurrent neural network models which used training data to adjust model structure and weights for temperature predictions (Jia et al. 2019). Process-Guided Deep Learning (PGDL) models were DL models with an added physical constraint for energy conservation as a loss term. These models were pre-trained with uncalibrated Process-Based model outputs (PB0) before training on actual temperature observations. Performance was measured as root-mean squared errors relative to temperature observations during the test period. Test data include compiled water temperature data from a variety of sources, including the Water Quality Portal (Read et al. 2017), the North Temperate Lakes Long-TERM Ecological Research Program (https://lter.limnology.wisc.edu/), the Minnesota department of Natural Resources, and the Global Lake Ecological Observatory Network (gleon.org). This dataset is part of a larger data release of lake temperature model inputs and outputs for 68 lakes in the U.S. states of Minnesota and Wisconsin (http://dx.doi.org/10.5066/P9AQPIVD).
Click on title to download individual files attached to this item.
06_evaluation.xml Original FGDC Metadata
View
14.56 KB
application/fgdc+xml
Related External Resources
Type: Related Primary Publication
Read, J. S., Jia, X., Willard, J., Appling, A. P., Zwart, J. A., Oliver, S. K., et al ( 2019). Processāguided deep learning predictions of lake water temperature. Water Resources Research, 55. https://doi.org/10.1029/2019WR024922