Skip to main content

Predicted cheatgrass cover in Great Basin based on low medium and high invasion scenarios

Dates

Publication Date
Start Date
2011
End Date
2016

Citation

Sofaer, H.R., 2022, Great Basin predicted potential cheatgrass abundance, with model estimation and validation data from 2011-2019: U.S. Geological Survey data release, https://doi.org/10.5066/P9OEY7X5.

Summary

Data represent predicted cheatgrass (Bromus tectorum) cover from a quantile regression model. We used quantile regression to model cheatgrass abundance as a function of climate, weather, and disturbance, treating outputs as low to high invasion scenarios.The model was developed using cheatgrass cover data collected by the Bureau of Land Management (BLM) Assessment, Inventory, and Monitoring (AIM) program, paired with covariates representing climate, weather, fire history, and disturbance. Quantile regression estimates different coefficients for each predictor variable at each quantile of interest, allowing a given environmental variable to be more or less important at the high end of the response distribution. The predictions at each [...]

Contacts

Point of Contact :
Helen R Sofaer
Originator :
Helen R Sofaer
Metadata Contact :
Helen R Sofaer
Publisher :
U.S. Geological Survey
Distributor :
U.S. Geological Survey - ScienceBase

Attached Files

Click on title to download individual files attached to this item.

Extension: high_quantile_predicted_BRTE.zip
high_quantile_predicted_BRTE.tif 135.04 MB
high_quantile_predicted_BRTE.tif-ColorRamp.SLD 2.07 KB
Extension: medium_quantile_predicted_BRTE.zip
medium_quantile_predicted_BRTE.tif 108.34 MB
medium_quantile_predicted_BRTE.tif-ColorRamp.SLD 2.07 KB
Extension: low_quantile_predicted_BRTE.zip
low_quantile_predicted_BRTE.tif 56.84 MB
low_quantile_predicted_BRTE.tif-ColorRamp.SLD 2.07 KB

Purpose

Data represent model predictions, and can be used in combination with local knowledge to assess potential cheatgrass cover. Overlaying these predictions with maps of current annual invasive grass cover can be used to identify lightly invaded areas that have high invasion risk. The three files represent low, medium, or high invasion scenarios, and are based on a different quantile of a quantile regression model predicting cheatgrass cover.

Map

Spatial Services

ScienceBase WMS

ScienceBase WCS

Communities

  • Pacific Island Ecosystems Research Center

Tags

Provenance

Data source
Input directly

Additional Information

Raster Extension

files
namehigh_quantile_predicted_BRTE.tif
contentTypeimage/geotiff
pathOnDisk__disk__f8/0d/96/f80d967132b17cf104ca92401ba8783ffc1e1102
size141599181
dateUploadedWed Jun 01 15:58:34 MDT 2022
checksum
value13a6a73d263ae8a559d85be7e3b82ad9
typeMD5
namehigh_quantile_predicted_BRTE.tif-ColorRamp.SLD
contentTypeapplication/sld+xml
pathOnDisk__disk__8f/38/93/8f3893f8f6bfff01db2a3c25b65d016ff87a349a
imageWidth580
imageHeight435
size2120
dateUploadedWed Jun 01 16:10:24 MDT 2022
namehigh_quantile_predicted_BRTE
nativeCrsEPSG:4269
rasterTypeGeoTIFF

Raster Extension

files
namemedium_quantile_predicted_BRTE.tif
contentTypeimage/geotiff
pathOnDisk__disk__10/32/53/103253e0c5e4dd5208ebed6db878328732f5dcb7
size113605368
dateUploadedWed Jun 01 16:23:00 MDT 2022
checksum
value47b238abd90446b27c807b59cde81417
typeMD5
namemedium_quantile_predicted_BRTE.tif-ColorRamp.SLD
contentTypeapplication/sld+xml
pathOnDisk__disk__a4/a5/cd/a4a5cd3305974be45dc37a99cd65d6cded242deb
imageWidth580
imageHeight435
size2120
dateUploadedWed Jun 01 16:24:40 MDT 2022
namemedium_quantile_predicted_BRTE
nativeCrsEPSG:4269
rasterTypeGeoTIFF

Raster Extension

files
namelow_quantile_predicted_BRTE.tif
contentTypeimage/geotiff
pathOnDisk__disk__8c/37/16/8c371647ca74dba8c716d79a0213ec142a814588
size59605200
dateUploadedWed Jun 01 16:30:28 MDT 2022
checksum
value4a46ab012dd395dbc5d8c66a43784796
typeMD5
namelow_quantile_predicted_BRTE.tif-ColorRamp.SLD
contentTypeapplication/sld+xml
pathOnDisk__disk__98/26/68/982668b8d5eb3432222af13f294c0abdac40ab9e
imageWidth580
imageHeight435
size2120
dateUploadedWed Jun 01 16:30:49 MDT 2022
namelow_quantile_predicted_BRTE
nativeCrsEPSG:4269
rasterTypeGeoTIFF

Item Actions

View Item as ...

Save Item as ...

View Item...