Skip to main content

Annotations of Sandhill Crane Targets for Computer Vision Tasks

Dates

Publication Date
Time Period
2018-03-20
Time Period
2018-03-21
Time Period
2021-03-21

Citation

Lubinski, B., Robinson, L.R., Finley, B.C., Wilkerson, G., Strassman, A.C., Baker, A., Luz-Ricca, E., Bragger., A., and Landolt, K.L., 2022, Aerial thermal imagery of the Central Platte River Valley and bounding box annotations of sandhill cranes: U.S. Geological Survey data release, https://doi.org/10.5066/P9DZKFQ3.

Summary

We provide manually annotated bounding boxes of sandhill crane targets in thermal imagery for use in deep learning models. The dataset contains forty files, each file representing the manual annotations created for a single image. We used the open-source tool labelImg (https://pypi.org/project/labelImg/) to create annotations and saved them in PASCAL VOC format.

Contacts

Point of Contact :
Kyle L Landolt
Originator :
Emilio Luz-Ricca, Kyle L Landolt, Anna M Bragger
Metadata Contact :
Kyle L Landolt
Publisher :
U.S. Geological Survey
Distributor :
U.S. Geological Survey - ScienceBase

Attached Files

Click on title to download individual files attached to this item.

20180320_212957_600_9151.xml 525.2 KB application/xml
20180320_212958_600_9152.xml 383 KB application/xml
20180320_213531_728_9420.xml 506.89 KB application/xml
20180320_215253_502_10460.xml 311.09 KB application/xml
20180321_220440_395_1832.xml 632.92 KB application/xml
20180321_223201_097_2803.xml 395.4 KB application/xml
20180321_223203_097_2805.xml 619.29 KB application/xml
20180321_223204_097_2806.xml 830.35 KB application/xml
20180321_223215_097_2817.xml 851.84 KB application/xml
20180321_223216_097_2818.xml 388.56 KB application/xml
FLIR2_20210321_201851_358_2510.xml 942.24 KB application/xml
FLIR2_20210321_204704_024_4313.xml 448.64 KB application/xml
FLIR2_20210321_205849_352_4973.xml 298.74 KB application/xml
FLIR2_20210321_205850_355_4974.xml 382.98 KB application/xml
FLIR2_20210321_212531_852_5634.xml 399.95 KB application/xml
FLIR2_20210321_212535_841_5638.xml 314.99 KB application/xml
FLIR2_20210321_212536_840_5639.xml 98.36 KB application/xml
FLIR2_20210321_213439_159_5907.xml 307.51 KB application/xml
FLIR2_20210321_214952_459_6133.xml 790.81 KB application/xml
FLIR2_20210321_215413_167_6212.xml 459.44 KB application/xml
FLIR2_20210321_223143_100_6724.xml 400.43 KB application/xml
FLIR2_20210321_223145_103_6726.xml 409.93 KB application/xml
FLIR2_20210321_223549_810_6783.xml 385.44 KB application/xml
FLIR2_20210321_223621_807_6815.xml 258.82 KB application/xml
FLIR2_20210321_223622_806_6816.xml 236.73 KB application/xml
FLIR2_20210321_223624_804_6818.xml 473.95 KB application/xml
FLIR2_20210321_223638_807_6832.xml 423.72 KB application/xml
FLIR2_20210321_224939_668_6991.xml 30.67 KB application/xml
FLIR2_20210321_224952_670_7004.xml 25.65 KB application/xml
FLIR2_20210321_225422_649_7069.xml 75.74 KB application/xml
FLIR2_20210321_225423_648_7070.xml 42.08 KB application/xml
FLIR2_20210321_225458_654_7105.xml 166.13 KB application/xml
FLIR2_20210321_225459_651_7106.xml 94.8 KB application/xml
FLIR2_20210321_225956_449_7159.xml 296.13 KB application/xml
FLIR2_20210321_225958_453_7161.xml 140.61 KB application/xml
FLIR2_20210321_225959_452_7162.xml 225.12 KB application/xml
FLIR2_20210321_230001_449_7164.xml 80.07 KB application/xml
FLIR2_20210321_230002_445_7165.xml 79.37 KB application/xml
FLIR2_20210321_230003_446_7166.xml 64.68 KB application/xml
FLIR2_20210321_230004_454_7167.xml 73.48 KB application/xml
README.txt 404 Bytes text/plain

Purpose

Deep learning methods are becoming increasingly used to automate the detection of wildlife over large spatial areas. This dataset contains manually annotated bounding boxes of thermal objects (i.e. sandhill cranes) in the Central Platte River Valley of Nebraska, USA, to help train deep learning algorithms for computer vision tasks.

Map

Communities

  • Upper Midwest Environmental Sciences Center (UMESC)

Tags

Provenance

Data source
Input directly

Item Actions

View Item as ...

Save Item as ...

View Item...