Assessments of the potential responses of animal species to climate change often rely on correlations between long-term average temperature or precipitation and species' occurrence or abundance. Such assessments do not account for the potential predictive capacity of either climate extremes and variability or the indirect effects of climate as mediated by plant phenology. By contrast, we projected responses of wildlife in desert grasslands of the southwestern United States to future climate means, extremes, and variability and changes in the timing and magnitude of primary productivity. We used historical climate data and remotely sensed phenology metrics to develop predictive models of climate-phenology relations and to project phenology given anticipated future climate. We used wildlife survey data to develop models of wildlife-climate and wildlife-phenology relations. Then, on the basis of the modeled relations between climate and phenology variables, and expectations of future climate change, we projected the occurrence or density of four species of management interest associated with these grasslands: Gambel's Quail (Callipepla gambelii), Scaled Quail (Callipepla squamat), Gunnison's prairie dog (Cynomys gunnisoni), and American pronghorn (Antilocapra americana). Our results illustrated that climate extremes and plant phenology may contribute more to projecting wildlife responses to climate change than climate means. Monthly climate extremes and phenology variables were influential predictors of population measures of all four species. For three species, models that included climate extremes as predictors outperformed models that did not include extremes. The most important predictors, and months in which the predictors were most relevant to wildlife occurrence or density, varied among species. Our results highlighted that spatial and temporal variability in climate, phenology, and population measures may limit the utility of climate averages-based bioclimatic niche models for informing wildlife management actions, and may suggest priorities for sustained data collection and continued analysis.