Skip to main content
Advanced Search

Filters: Types: Downloadable (X) > Categories: Data (X) > partyWithName: U.S. Geological Survey (X)

1,096 results (435ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
Clean water is important for a variety of uses, including drinking, recreation, and as habitat for aquatic species. Nonpoint-source pollution, such as nutrients, sediment, and pesticides from agricultural runoff, is a major cause of impaired water quality in the United States . Vegetation and soil in natural land cover help to remove pollutants from runoff water before it reaches streams and other waterways by slowing water flow and physically trapping sediment. To assess the spatial distribution of water purification potential in the southeastern United States, we mapped the demand for purification as the total area of agricultural land and the supply of natural land cover in the flowpath over which water moves...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
An upward-looking acoustic Doppler velocity meter (ADVM; Sontek XR, 1.5 MHz) was deployed in McAllister Creek at site MC2 (N 47° 05’ 43”/W 122° 43’ 38”) and continuously recorded water velocity, temperature and water level at 5-minute intervals from September 26, 2016 to October 14, 2016 (18 days), and at 15-minute intervals from December 2, 2016 to May 25, 2017 (174 days) except for the period of March 6 – 11, 2017 when the sensor was removed for maintenance and battery replacement. The site is tidally influenced and located approximately 0.7 km upstream from the mouth of McAllister Creek. The measurement averaging interval for the ADVM was 60 s. The blanking distance was set at 0.5 m and the cell end was set at...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
Karst hydrologic systems are important resources in the state of Tennessee both as drinking water resources and as centers for possible biological diversity. These systems are susceptible to contamination due to the inherent connectivity between surface water and groundwater in karst landscapes. A partnership between the U.S. Geological Survey (USGS) and Tennessee Department of Conservation (TDEC) was formed to investigate karst spring systems across the state utilizing fluorescent groundwater tracing, particularly in areas where these resources may be used as drinking water sources. In fall 2021, USGS and TDEC staff identified possible vulnerabilities or complexities that may exist within karst spring systems based...
Categories: Data; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Downloadable, Map Service; Tags: Boiling Fork Creek, COWAN TENNESSEE KARST SPRING CAVE DYE TRACING TDEC USGS, Cannon County, TN, Cowan, TN, Cumberland Plateau, All tags...
thumbnail
Karst hydrologic systems are important resources in the state of Tennessee both as drinking water resources and as centers for possible biological diversity. These systems are susceptible to contamination due to the inherent connectivity between surface water and groundwater systems in karst systems. A partnership between the U.S. Geological Survey (USGS) and Tennessee Department of Conservation (TDEC) was formed to investigate karst spring systems across the state utilizing fluorescent groundwater tracing, particularly in areas where these resources may be used as drinking water sources. In fall 2021, USGS and TDEC staff identified possible vulnerabilities or complexities that may exist within karst spring systems...
thumbnail
The groundwater-level change maps for the Sparta-Memphis aquifer are constructed as a point-to-point comparison between wells measured in both 2013 and 2015. Wells not measured in both 2013 and 2015 were not included in the change maps construction. The 2013-2015 change map contains 241 corresponding wells. Groundwater-level differences were calculated by subtracting 2013 groundwater-level measurements, in feet below land surface from the 2015 groundwater-level measurements, in feet below land surface.
thumbnail
Karst hydrologic systems are important resources in the state of Tennessee both as drinking water resources and as centers for possible biological diversity. These systems are susceptible to contamination due to the inherent connectivity between surface water and groundwater systems in karst systems. A partnership between the U.S. Geological Survey (USGS) and Tennessee Department of Conservation (TDEC) was formed to investigate karst spring systems across the state utilizing fluorescent groundwater tracing, particularly in areas where these resources may be used as drinking water sources. In fall 2021, USGS and TDEC staff identified possible vulnerabilities or complexities that may exist within karst spring systems...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
Karst hydrologic systems are important resources in the state of Tennessee both as drinking water resources and as centers for possible biological diversity. These systems are susceptible to contamination due to the inherent connectivity between surface water and groundwater systems in karst systems. A partnership between the U.S. Geological Survey (USGS) and Tennessee Department of Conservation (TDEC) was formed to investigate karst spring systems across the state utilizing fluorescent groundwater tracing, particularly in areas where these resources may be used as drinking water sources. In fall 2021, USGS and TDEC staff identified possible vulnerabilities or complexities that may exist within karst spring systems...
thumbnail
The groundwater-level change maps for the Sparta-Memphis aquifer are constructed as a point-to-point comparison between wells measured in both 2011 and 2013. Wells not measured in both 2011 and 2013 were not included in the change maps construction. The 2011-2013 change map contains 261 corresponding wells. Groundwater-level differences were calculated by subtracting 2011 groundwater-level measurements, in ft below land surface from the 2013 groundwater-level measurements, in feet below land surface.
Hurricane Sandy, which made landfall on October 29, 2012, near Brigantine, New Jersey, had a significant impact on coastal New Jersey, including the large areas of emergent wetlands at Edwin B. Forsythe National Wildlife Refuge (NWR) and the Barnegat Bay region. In response to Hurricane Sandy, U.S. Geological Survey (USGS) has undertaken several projects to assess the impacts of the storm and provide data and scientific analysis to support recovery and restoration efforts. As part of these efforts, the USGS Coastal and Marine Geology Program (CMGP) sponsored Coastal National Elevation Database (CoNED) Applications Project in collaboration with the USGS National Geospatial Program (NGP), and National Oceanic and...
thumbnail
Karst hydrologic systems are important resources in the state of Tennessee both as drinking water resources and as centers for possible biological diversity. These systems are susceptible to contamination due to the inherent connectivity between surface water and groundwater systems in karst systems. A partnership between the U.S. Geological Survey (USGS) and Tennessee Department of Conservation (TDEC) was formed to investigate karst spring systems across the state utilizing fluorescent groundwater tracing, particularly in areas where these resources may be used as drinking water sources. In fall 2021, USGS and TDEC staff identified possible vulnerabilities or complexities that may exist within karst spring systems...


map background search result map search result map Soil available water capacity in the Wyoming Basins Ecoregional Assessment area Distance (m) to Intermittent Water within the Wyoming Basins Ecoregional Assessment area Distance (m) to Perennial Water within the Wyoming Basins Ecoregional Assessment area 2010: Delineation of Water Bodies in Emergent Wetlands in Coastal New Jersey Depth to Water Data in the Upper Glacial and Magothy Aquifers, April-May 2016 Depth to the Water Raster on Long Island, New York, April–May 2016 Water Level Data in the Lloyd and North Shore Aquifers, April-May 2016 Water Level Data in the Magothy and Jameco Aquifers, April-May 2016 Water Table Contours in the Upper Glacial and Magothy Aquifers, April-May 2016 Stream and Lake Average Water-Level Altitudes, April-May 2016 Water Table Data in the Upper Glacial and Magothy Aquifers, April-May 2016 Water Data for McAllister Creek at Site MC2 (ver. 1.1, December 2019) Water-level changes 2011-2013, in the Sparta-Memphis aquifer, in Arkansas Water-level changes 2013-2015, in the Sparta-Memphis aquifer, in Arkansas Conservation and restoration priorities for water purification in the southeast United States, by county (2011) Tennessee Karst Groundwater Dye Tracing Water Year 2022 Cowan, Tennessee Karst Groundwater Dye Tracing Water Year 2022 Jasper, Tennessee Karst Groundwater Dye Tracing Water Year 2022 Woodbury, Tennessee Karst Groundwater Dye Tracing Water Year 2022 Vanleer, Tennessee Karst Groundwater Dye Tracing Water Year 2022 Water Data for McAllister Creek at Site MC2 (ver. 1.1, December 2019) Vanleer, Tennessee Karst Groundwater Dye Tracing Water Year 2022 Jasper, Tennessee Karst Groundwater Dye Tracing Water Year 2022 Cowan, Tennessee Karst Groundwater Dye Tracing Water Year 2022 2010: Delineation of Water Bodies in Emergent Wetlands in Coastal New Jersey Stream and Lake Average Water-Level Altitudes, April-May 2016 Water Table Contours in the Upper Glacial and Magothy Aquifers, April-May 2016 Depth to Water Data in the Upper Glacial and Magothy Aquifers, April-May 2016 Water Table Data in the Upper Glacial and Magothy Aquifers, April-May 2016 Water Level Data in the Magothy and Jameco Aquifers, April-May 2016 Water Level Data in the Lloyd and North Shore Aquifers, April-May 2016 Depth to the Water Raster on Long Island, New York, April–May 2016 Tennessee Karst Groundwater Dye Tracing Water Year 2022 Water-level changes 2013-2015, in the Sparta-Memphis aquifer, in Arkansas Water-level changes 2011-2013, in the Sparta-Memphis aquifer, in Arkansas Soil available water capacity in the Wyoming Basins Ecoregional Assessment area Distance (m) to Intermittent Water within the Wyoming Basins Ecoregional Assessment area Distance (m) to Perennial Water within the Wyoming Basins Ecoregional Assessment area Conservation and restoration priorities for water purification in the southeast United States, by county (2011)