Skip to main content
Advanced Search

Filters: Extensions: Citation (X) > Categories: Publication (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > Southwest CASC > FY 2012 Projects ( Show direct descendants )

30 results (45ms)   

Filters
Date Range
Types
Contacts
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Future changes in the number of dry days per year can either reinforce or counteract projected increases in daily precipitation intensity as the climate warms. We analyze climate model projected changes in the number of dry days using 28 coupled global climate models from the Coupled Model Intercomparison Project, version 5 (CMIP5). We find that the Mediterranean Sea region, parts of Central and South America, and western Indonesia could experience up to 30 more dry days per year by the end of this century. We illustrate how changes in the number of dry days and the precipitation intensity on precipitating days combine to produce changes in annual precipitation, and show that over much of the subtropics the change...
Abstract (from http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-14-0236.1): Global climate model (GCM) output typically needs to be bias corrected before it can be used for climate change impact studies. Three existing bias correction methods, and a new one developed here, are applied to daily maximum temperature and precipitation from 21 GCMs to investigate how different methods alter the climate change signal of the GCM. The quantile mapping (QM) and cumulative distribution function transform (CDF-t) bias correction methods can significantly alter the GCM’s mean climate change signal, with differences of up to 2°C and 30% points for monthly mean temperature and precipitation, respectively. Equidistant quantile...
Native Americans in the Southwest United States are thought to be particularly vulnerable to climate change. Tribal resiliency to climate change can be affected by multiple climate-related threats and by tribal communities’ close reliance on natural resources for sustenance, economic development, and maintenance of cultural traditions. A scientifically rigorous assessment of such threats to Native Americans is a pressing need across southwestern landscapes. This project examined factors affecting Native American tribes, including water rights for fish and wildlife, protection of wetlands, and enhancement and recovery of the Pyramid Lake, Nevada fishery, and protection of important fish species. This project aimed...
The impacts of different emission levels and climate change conditions to landscape-scale natural vegetation could have large repercussions for ecosystem services and environmental health. We forecast the risk-reduction benefits to natural landscapes of lowering business-as-usual greenhouse gas emissions by comparing the extent and spatial patterns of climate exposure to dominant vegetation under current emissions trajectories (Representative Concentration Pathway, RCP8.5) and envisioned Paris Accord target emissions (RCP4.5). This comparison allows us to assess the ecosystem value of reaching targets to keep global temperature warming under 2°C. Using 350,719 km2 of natural lands in California, USA, and the mapped...
Climate change’s threat to the identity, culture, economy, and livelihoods of the Pyramid Lake Paiute Tribe (PLPT) can be better understood through community-engaged participatory methods. Our research team of Indigenous and non-Indigenous scientists formed a tribal-university partnership with the PLPT Council to understand how climate change and upstream pressures threaten PLPT ecosystems, lands, and resources. The objectives are to: (1) consider how decolonizing, Indigenizing, and participatory methodologies can inform climate research engagement between scientists and Indigenous partners; (2) understand PLPT perspectives of climate change impacts and priorities for climate research; and (3) engage the PLPT community...
Categories: Publication; Types: Citation
We used a first-of-its-kind comprehensive scenario approach to evaluate both the vertical and horizontal response of tidal wetlands to projected changes in the rate of sea-level rise (SLR) across 14 estuaries along the Pacific coast of the continental United States. Throughout the U.S. Pacific region, we found that tidal wetlands are highly vulnerable to end-of-century submergence, with resulting extensive loss of habitat. Using higher-range SLR scenarios, all high and middle marsh habitats were lost, with 83% of current tidal wetlands transitioning to unvegetated habitats by 2110. The wetland area lost was greater in California and Oregon (100%) but still severe in Washington, with 68% submerged by the end of the...
As the climate evolves over the next century, the interaction of accelerating sea level rise (SLR) and storms, combined with confining development and infrastructure, will place greater stresses on physical, ecological, and human systems along the ocean-land margin. Many of these valued coastal systems could reach “tipping points,” at which hazard exposure substantially increases and threatens the present-day form, function, and viability of communities, infrastructure, and ecosystems. Determining the timing and nature of these tipping points is essential for effective climate adaptation planning. Here we present a multidisciplinary case study from Santa Barbara, California (USA), to identify potential climate change-related...
Categories: Publication; Types: Citation
Abstract (from AGU): The prolonged 2012–2016 California drought has raised many issues including concerns over reduced vegetation health. Drought impacts are complicated by geographical differences in hydroclimatic variability due to a climatic dipole influenced by the Pacific. Analysis of MODIS‐derived Normalized Difference Vegetation Index and self‐calibrated Palmer Drought Severity Index from 2000 to 2018 reveals differences in drought and vegetation responses in Northern versus Southern California (NorCal vs SoCal, see definition in section 2.1). The greatest declines in Normalized Difference Vegetation Index were focused in the SoCal, while NorCal appears not severely affected thus far. It appears that both...
Abstract (from http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-15-0199.1): Future snowfall and snowpack changes over the mountains of Southern California are projected using a new hybrid dynamical–statistical framework. Output from all general circulation models (GCMs) in phase 5 of the Coupled Model Intercomparison Project archive is downscaled to 2-km resolution over the region. Variables pertaining to snow are analyzed for the middle (2041–60) and end (2081–2100) of the twenty-first century under two representative concentration pathway (RCP) scenarios: RCP8.5 (business as usual) and RCP2.6 (mitigation). These four sets of projections are compared with a baseline reconstruction of climate from 1981 to 2000....
Abstract (from http://link.springer.com/article/10.1007%2Fs10584-013-0852-y): This paper provides an overview of climate change impacts on tribal water resources and the subsequent cascading effects on the livelihoods and cultures of American Indians and Alaska Natives living on tribal lands in the U.S. A hazards and vulnerability framework for understanding these impacts is first presented followed by context on the framework components, including climate, hydrologic, and ecosystem changes (i.e. hazards) and tribe-specific vulnerability factors (socioeconomic, political, infrastructural, environmental, spiritual and cultural), which when combined with hazards lead to impacts. Next regional summaries of impacts...
Abstract (from http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-14-0082.1): A new technique for statistically downscaling climate model simulations of daily temperature and precipitation is introduced and demonstrated over the western United States. The localized constructed analogs (LOCA) method produces downscaled estimates suitable for hydrological simulations using a multiscale spatial matching scheme to pick appropriate analog days from observations. First, a pool of candidate observed analog days is chosen by matching the model field to be downscaled to observed days over the region that is positively correlated with the point being downscaled, which leads to a natural independence of the downscaling results...
This presentation provides an overview of the year-round migrations of the Cui-ui and Lahontan cutthroat trout within Pyramid Lake. This was developed for the "Climate Change Vulnerability of Native Americans in the Southwest" research project, funded by the USGS Southwest Climate Science Center.
Abstract (from http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-14-00196.1): In this study (Part I), the mid-twenty-first-century surface air temperature increase in the entire CMIP5 ensemble is downscaled to very high resolution (2 km) over the Los Angeles region, using a new hybrid dynamical–statistical technique. This technique combines the ability of dynamical downscaling to capture finescale dynamics with the computational savings of a statistical model to downscale multiple GCMs. First, dynamical downscaling is applied to five GCMs. Guided by an understanding of the underlying local dynamics, a simple statistical model is built relating the GCM input and the dynamically downscaled output. This statistical...
Abstract (from http://link.springer.com/article/10.1007%2Fs00382-012-1337-9): Sixteen global general circulation models were used to develop probabilistic projections of temperature (T) and precipitation (P) changes over California by the 2060s. The global models were downscaled with two statistical techniques and three nested dynamical regional climate models, although not all global models were downscaled with all techniques. Both monthly and daily timescale changes in T and P are addressed, the latter being important for a range of applications in energy use, water management, and agriculture. The T changes tend to agree more across downscaling techniques than the P changes. Year-to-year natural internal climate...
The objective of our work is to develop a general and transferrable approach to defining how any given hydrologic system will filter climatic forcings. We will develop a framework that can allow for rapid assessment of the vulnerability of hydrologic systems to predicted climate changes of varying complexity, often without the need for site-specific hydrologic models. Our approach will guide site-specific modeling, where appropriate, to focus on those components of predicted climate change that are most likely to persist through the groundwater system. We are focusing on the role of the unsaturated zone in the filtering of climatic forcings. More specifically, we are examining how variations in infiltration are...
Abstract: The recognition of climate change issues facing tribal communities and indigenous peoples in the United States is growing, and understanding its impacts is rooted in indigenous ethical perspectives and systems of ecological knowledge. This foundation presents a context and guide for contemporary indigenous approaches to address climate change impacts that are comprehensive and holistic. Tribal communities and indigenous peoples across the United States are reenvisioning the role of science in the Anthropocene; working to strengthen government-to-government relationships in climate change initiatives; and leading climate change research, mitigation and adaptation plans through indigenous ingenuity. Unique...
Abstract (from SpringerLink): The distribution patterns of sessile organisms in coastal intertidal habitats typically exhibit vertical zonation, but little is known about variability in zonation among sites or species at larger spatial scales. Data on such heterogeneity could inform mechanistic understanding of factors affecting species distributions as well as efforts to assess and manage coastal species and habitat vulnerability to sea-level rise. Using data on the vertical distribution of common plant species at 12 tidal marshes across the US Pacific coast, we examined heterogeneity in patterns of zonation to test whether distributions varied by site, species, or latitude. Interspecific zonation was evident at...
Abstract (from MDPI): A combination of drought and high temperatures (“global-change-type drought”) is projected to become increasingly common in Mediterranean climate regions. Recently, Southern California has experienced record-breaking high temperatures coupled with significant precipitation deficits, which provides opportunities to investigate the impacts of high temperatures on the drought sensitivity of Mediterranean climate vegetation. Responses of different vegetation types to drought are quantified using the Moderate Resolution Imaging Spectroradiometer (MODIS) data for the period 2000–2017. The contrasting responses of the vegetation types to drought are captured by the correlation and regression coefficients...
Abstract Urban vegetation is valuable in alleviating local heatwaves. However, drought may decrease vegetation health and limit this cooling effect. Here we use satellite-based Normalized Difference Vegetation Index (NDVI) and Palmer Drought Severity Index (PDSI) to investigate the sensitivity of urban vegetation to drought in Coastal Greater Los Angeles (CGLA) from 2001 to 2020. We applied four statistical models to analyze the relations between 15 socioeconomic variables and the vegetation's sensitivity to drought. We then examined the changes in the cooling effect of the urban vegetation during drought and non-drought periods using remotely sensed land surface temperature (LST) data. The results suggest that...
Categories: Publication; Types: Citation
This project is working closely with web developers (California Climate Commons, http://climate.calcommons.org; and the California Landscape Conservation Cooperative) to provide user-friendly tools and guidance from site to regional scales with direct feedback from natural resource managers for utility, understandability, relevance, and accessibility. Ongoing projects and relationships across multiple disciplines, organizations, and applications provide this forum. An important aspect of the project was to build capacity of the Commons and engage a larger management community in issues associated with water availability/water supply analysis.