Skip to main content
Advanced Search

Filters: Extensions: Citation (X) > partyWithName: Schmidt, John C (X)

15 results (50ms)   

View Results as: JSON ATOM CSV
The magnitude and frequency of tributary debris flows and the historical range of main- stem river discharges are the main factors that create and modify rapids in the Colorado River system. Monitoring of two recently aggraded debris fans in the Green River canyons of the eastern Uinta Mountains shows that main-stem floods with magnitudes between 40% and 75% of the predam 2 yr flood cause significant reworking of fan deposits. Cutbanks formed at fan margins during both small and large flows, indicating that lateral bank erosion is an important reworking mechanism. Armoring of the debris-fan surface limited the degree of reworking by successive floods, even when subsequent flood magnitudes were similar to those that...
Categories: Publication; Types: Citation, Journal Citation; Tags: Geology
The style and degree of channel narrowing in aggrading reaches downstream from large dams is dependent upon the dominant geomorphic processes of the affected river, the magnitude of streamflow regulation, and the post-dam sediment transport regime. We measured different magnitudes of channel adjustment on the Green River downstream from Flaming Gorge Dam, UT, USA, that are related to these three factors. Bankfull channel width decreased by an average of about 20% in the study area. In reaches with abundant debris fans and eddy deposited sand bars, the amount of channel narrowing was proportional to the decrease in specific stream power. The fan?eddy-dominated reach with the greatest decrease in stream power narrowed...
In settings where the transport of sand is partially or fully supply limited, changes in the upstream supply of sand are coupled to changes in the grain size of sand on the bed. In this manner, the transport of sand under the supply-limited case is ‘grain-size regulated’. Since the closure of Glen Canyon Dam in 1963, the downstream reach of the Colorado River in Marble and Grand Canyons has exhibited evidence of sand-supply limitation. Sand transport in the river is now approximately equally regulated by changes in the discharge of water and changes in the grain sizes of sand on the channel bed and eddy sandbars. Previous work has shown that changes in the grain size of sand on the bed of the channel (driven by...
We evaluate three metrics representing the drivers of channel change downstream from dams. A balance between changes in sediment supply and transport capacity identifies conditions of sediment deficit or surplus. A Shields number represents the competence of postdam flows and the potential for incision under conditions of sediment deficit. A ratio of postdam to predam flood discharge provides a metric for the scale and rate of channel change, especially width. The metrics are calculated for more than 4000 km of some of the major rivers in the western United States. More than 60% of these rivers are in sediment deficit, and only a few reaches are in sediment surplus. The sediment balance can be used to assess the...
Glen Canyon Dam has caused a fundamental change in the distribution of fine sediment storage in the 99-km reach of the Colorado River in Marble Canyon, Grand Canyon National Park, Arizona. The two major storage sites for fine sediment (i.e., sand and finer material) in this canyon river are lateral recirculation eddies and the main-channel bed. We use a combination of methods, including direct measurement of sediment storage change, measurements of sediment flux, and comparison of the grain size of sediment found in different storage sites relative to the supply and that in transport, in order to evaluate the change in both the volume and location of sediment storage. The analysis shows that the bed of the main...
Despite decades of research and abundant case studies on downstream effects of dams on rivers, we have few general models predicting how any particular river is likely to adjust following impoundment. Here we present a conceptual and analytical framework for predicting geomorphic response of rivers to dams, emphasizing the role of geologic setting and history as first-order controls on the trajectory of change. Basin geology influences watershed and channel processes through a hierarchical set of linkages, extending from the drainage basin to the valley and channel, which determine the sediment transport and discharge regimes. Geology also directly shapes the suite of hillslope processes, landforms, and geomorphic...
Wavelet analysis is a powerful tool with which to analyse the hydrologic effects of dam construction and operation on river systems. Using continuous records of instantaneous discharge from the Lees Ferry gauging station and records of daily mean discharge from upstream tributaries, we conducted wavelet analyses of the hydrologic structure of the Colorado River in Grand Canyon. The wavelet power spectrum (WPS) of daily mean discharge provided a highly compressed and integrative picture of the post-dam elimination of pronounced annual and sub-annual flow features. The WPS of the continuous record showed the influence of diurnal and weekly power generation cycles, shifts in discharge management, and the 1996 experimental...
In settings where the transport of sand is partially or fully supply limited, changes in the upstream supply of sand are coupled to changes in the grain size of sand on the bed. In this manner, the transport of sand under the supply-limited case is ?grain-size regulated?. Since the closure of Glen Canyon Dam in 1963, the downstream reach of the Colorado River in Marble and Grand Canyons has exhibited evidence of sand-supply limitation. Sand transport in the river is now approximately equally regulated by changes in the discharge of water and changes in the grain sizes of sand on the channel bed and eddy sandbars. Previous work has shown that changes in the grain size of sand on the bed of the channel (driven by...
Closure of Glen Canyon Dam in 1963 transformed the Colorado River by reducing the magnitude and duration of spring floods, increasing the magnitude of base flows, and trapping fine sediment delivered from the upper watershed. These changes caused the channel downstream in Glen Canyon to incise, armor, and narrow. This study synthesizes over 45 yr of channel-change measurements and demonstrates that the rate and style of channel adjustment are directly related to both natural processes associated with sediment deficit and human decisions about dam operations. Although bed lowering in lower Glen Canyon began when the first cofferdam was installed in 1959, most incision occurred in 1965 in conjunction with 14 pulsed...
Historical inventories of sand bar number and area are sufficient to detect large-scale differences in geomorphic adjustment among regulated rivers that flow through canyons with abundant debris fans. In these canyons, bedrock and large boulders create constrictions and expansions, and alluvial bars occur in associated eddies at predictable sites. Although these bars may fluctuate considerably in size, the locations of these bars rarely change, and their characteristics can be compared through time and among rivers. The area of sand bars exposed at low discharge in Hells Canyon has decreased 50 percent since dam closure, and most of the erosion occurred in the first nine years after dam closure. The number and size...
Analysis of field data and development and application of a dynamic model indicate that the processes that control the number and distribution of age-0 Colorado pikeminnow in the middle Green River are poorly understood. Colorado pikeminnow are a federally endangered species endemic to the Colorado River basin that utilize backwaters during their larval stage. The present agency-mandated field sampling program for backwater habitats may be inadequate because it takes place at a time when the model predicts that most larval fish have drifted beyond the study area. The model predicts that water releases from Flaming Gorge Dam have a large potential effect on larval drift, because high releases at the time of drift...
Wavelet analysis is a powerful tool with which to analyse the hydrologic effects of dam construction and operation on river systems. Using continuous records of instantaneous discharge from the Lees Ferry gauging station and records of daily mean discharge from upstream tributaries, we conducted wavelet analyses of the hydrologic structure of the Colorado River in Grand Canyon. The wavelet power spectrum (WPS) of daily mean discharge provided a highly compressed and integrative picture of the post-dam elimination of pronounced annual and sub-annual flow features. The WPS of the continuous record showed the influence of diurnal and weekly power generation cycles, shifts in discharge management, and the 1996 experimental...
thumbnail
As in many areas of high relief, debris flows are an important process linkage between hillslopes and the Green River in the canyons of the eastern Uinta Mountains, yet the physical conditions that lead to debris flow initiation are unknown. A recent episode of enhanced debris-flow and wildfire activity provided an opportunity to examine the geomorphic impact of fire and the processes by which weathered bedrock is transported to the Green River. Field investigations and analysis of elevation and precipitation data were undertaken in 15 catchments with recent debris flows to determine how surficial geology, wildfire, topography, bedrock strength, and meteorology influence hillslope processes. The recent debris flows...
This study examines bed and bank adjustment in the 105-km reach of the Green River immediately downstream from Flaming Gorge Dam by the use of historical aerial and oblique photographs, analysis of current and abandoned stream-gaging records, and field observations. Although this segment has been previously characterized as sediment deficient, these data show that sediment is accumulating in all reaches and that the bed has not degraded at any location where historical data are available. Adjustment is occurring through a combination of deposition of post-dam sediment and stabilization of pre-dam deposits, resulting in a 10?30% reduction in average width of the channel. All post-dam surfaces are colonized by woody...
Channel responses to flow depletions in the lower Duchesne River over the past 100 years have been highly complex and variable in space and time. In general, sand-bed reaches adjusted to all perturbations with bed-level changes, whereas the gravel-bed reaches adjusted primarily through width changes. Gravel-bed reaches aggraded only when gravel was supplied to the channel through local bank erosion and degraded only during extreme flood events. A 50% reduction in stream flow and an increase in fine sediment supply to the study area occurred in the first third of the 20th century. The gravel-bed reach responded primarily with channel narrowing, whereas bed aggradation and four large-scale avulsions occurred in the...


    map background search result map search result map Geologic versus wildfire controls on hillslope processes and debris flow initiation in the Green River canyons of Dinosaur National Monument Geologic versus wildfire controls on hillslope processes and debris flow initiation in the Green River canyons of Dinosaur National Monument