Skip to main content
Advanced Search

Filters: Contacts: {oldPartyId:24015} (X) > Categories: Publication (X)

13 results (37ms)   

View Results as: JSON ATOM CSV
The Hawaiian Islands are home to a variety of native species that have been subject to numerous threats including development of habitat for human use, predation by introduced herbivores, and competition with invasive plant species. In addition to these threats global climate change is expected to increase temperature and alter patterns of precipitation in Hawaii. This project models the relative vulnerability of native plant species to the effects of climate change, in order to assist resource managers in effectively allocating limited resources to efficiently preserve and protect current and future habitat for native plants. We modeled vulnerability by creating an expert system – a network model linking biological...
Gridded bioclimatic variables representing yearly, seasonal, and monthly means and extremes in temperature and precipitation have been widely used for ecological modeling purposes and in broader climate change impact and biogeographical studies. As a result of their utility, numerous sets of bioclimatic variables have been developed on a global scale (e.g., WorldClim) but rarely represent the finer regional scale pattern of climate in Hawai'i. Recognizing the value of having such regionally downscaled products, we integrated more detailed projections from recent climate models developed for Hawai'i with current climatological datasets to generate updated regionally defined bioclimatic variables. We derived updated...
Categories: Publication; Types: Citation
Given the potential effect of invasive plants and animals to water fluxes through forests, the invasive-driven degradation of native ecosystems is a topic of great concern for many downstream land and water managers. The infiltration rate determines the partitioning between runoff and infiltration into soil in Hawaiian forests and beyond. Thus, to explore the ecohydrological effects of plant and animal invasion in mesic and wet forests in Hawaii, we measured soil infiltration capacity in multiple fenced (i.e., ungulate-free)/unfenced and native/invaded forest sites along moisture and substrate age gradients across the islands of Hawai‘i and Kaua‘i. We also characterized forest composition and structure and soil...
Categories: Publication; Types: Citation
The associated uncertainties of future climate projections are one of the biggest obstacles to overcome in studies exploring the potential regional impacts of future climate shifts. In remote and climatically complex regions, the limited number of available downscaled projections may not provide an accurate representation of the underlying uncertainty in future climate or the possible range of potential scenarios. Consequently, global downscaled projections are now some of the most widely used climate datasets in the world. However, they are rarely examined for representativeness of local climate or the plausibility of their projected changes. Here we explore the utility of two such global datasets (CHELSA and WorldClim2)...
Categories: Publication; Types: Citation
Changes in land cover can alter soil infiltration capacity and increase runoff and erosion, negatively affecting national parks and other public lands across Hawaiʻi. Reduced infiltration, the soil’s ability to allow water through it, within these lands may lead to serious consequences including terrestrial habitat damage by erosion, aquatic habitat damage by sedimentation, and downstream damage by flooding due to storm flows from overland flow, or runoff. To help understand potential damage, we calculated the probability of rainfall runoff across the Hawaiian landscape. By characterizing soil infiltration based on different land cover types (bare soil, grasses, and woody vegetation) and comparing them to large...
Categories: Publication; Types: Citation
Cloud-water interception (CWI) is the process by which fog or cloud water droplets are captured and accumulate on the leaves and branches of plants, some of which drips to the ground. Prior studies in Hawai'i indicate that CWI is highly variable and can contribute substantially to total precipitation. In this study, we monitored CWI and other processes at five mountain field sites on the Islands of Oʻahu, Maui, and Hawaiʻi to explore how CWI (1) varies with different climate and vegetation characteristics, (2) affects plant water use and growth, and (3) contributes to water resources. Results show that annual CWI varied from 158 to 910 mm, accounting for 3-34% of total water input at individual sites. This large...
Categories: Publication; Types: Citation
Watershed degradation due to invasion threatens downstream water flows and associated ecosystem services. While this topic has been studied across landscapes that have undergone invasive-driven state changes (e.g., native forest to invaded grassland), it is less well understood in ecosystems experiencing within-system invasion (e.g. native forest to invaded forest). To address this subject, we conducted an integrated ecological and ecohydrological study in tropical forests impacted by invasive plants and animals. We measured soil infiltration capacity in multiple fenced (i.e., ungulate-free)/unfenced and native/invaded forest site pairs along moisture and substrate age gradients across Hawaii to explore the effects...
Categories: Publication; Types: Citation
thumbnail
Conservation efforts in isolated archipelagos such as Hawaii often focus on habitat-based conservation and restoration efforts that benefit multiple species. Unfortunately, identifying locations where such efforts are safer from climatic shifts is still challenging. We aimed to provide a method to approximate these potential habitat shifts for similar data- and research-limited contexts. We modeled the relationship between climate and the potential distribution of native biomes across the Hawaiian archipelago to provide a first approximation of potential native biome shifts under end-of-century projected climate. Our correlative model circumvents the lack of data necessary for the parameterization of mechanistic...
The ability to effectively manage game species for specific conservation objectives is often limited by the scientific understanding of their distribution and abundance. This is especially true in Hawai‘i where introduced game mammals are poorly studied and have low value relative to native species in other states. We modeled the habitat suitability and ecological associations of European mouflon sheep (“mouflon”; Ovis musimon) and axis deer (Axis axis) on the island of Lāna‘i using intensive aerial survey and environmental data that included climate, vegetation, and topographic variables. We conducted diagnostic tests on a suite of primarily categorical predictors and determined most were highly correlated. We...
Categories: Publication; Types: Citation
In Hawai’i, ecosystem conservation practitioners are increasingly considering the potential ecohydrological benefits from applied conservation action to mitigate the degrading impacts of runoff on native and restored ecosystems. One determinant of runoff is excess rainfall events where rainfall rates exceed the infiltration capacity of soils. To help understand runoff risks, we calculated the probability of excess rainfall events across the Hawaiian landscape by comparing the probability distributions of projected rainfall frequency and land-cover-specific infiltration capacity. We characterized soil infiltration capacity based on different land cover types (bare soil, grasses, and woody vegetation) and compared...
Categories: Publication; Types: Citation
Across the Hawaiian Islands, effective management of at-risk species often relies on fine-scale actions by natural resource managers. However, balancing these actions with competing land use objectives concurrently can be challenging, especially in the context of a shifting climate. One example is the challenge of managing for hunting of non-native ungulates for subsistence and recreation, which often conflicts with the conservation of native species, and there is little reliable data to guide effective management. To address this issue, we modeled the habitat associations of axis deer and mouflon sheep on the Island of Lānaʻi. We found that both species occupy habitat different from their native environment, and...
Categories: Publication; Types: Citation
Alpine plants are likely to be particularly vulnerable to climate change because of their restricted distributions and sensitivity to rapid environmental shifts occurring in high-elevation ecosystems. The well-studied Haleakalā silversword (‘āhinahina, Argyroxiphium sandwicense subsp. macrocephalum) already exhibits substantial climate-associated population decline, and offers the opportunity to understand the ecological and demographic mechanisms that underlie ongoing and predicted range shifts. We use nearly four decades of demographic monitoring for this threatened Hawaiian species, in combination with other biological, ecological and climate data to explore demographic responses across its entire range. We construct...
Categories: Publication; Types: Citation
Drought is a prominent feature of Hawaiʻi’s climate. However, it has been over 30 years since the last comprehensive meteorological drought analysis, and recent drying trends have emphasized the need to better understand drought dynamics and multi-sector effects in Hawaiʻi. Here, we provide a comprehensive synthesis of past drought effects in Hawaiʻi that we integrate with geospatial analysis of drought characteristics using a newly developed 100-year (1920–2019) gridded Standardized Precipitation Index (SPI) dataset. The synthesis examines past droughts classified into five categories: Meteorological, agricultural, hydrological, ecological, and socioeconomic drought. Results show that drought duration and magnitude...
Categories: Publication; Types: Citation


    map background search result map search result map Identifying opportunities for long-lasting habitat conservation and restoration in Hawaii’s shifting climate Identifying opportunities for long-lasting habitat conservation and restoration in Hawaii’s shifting climate