Skip to main content
Advanced Search

Filters: partyWithName: Brett J Valentine (X)

15 results (15ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
To test if reflectance increases to sedimentary organic matter (vitrinite) caused by broad ion beam (BIB) milling were related to molecular aromatization and condensation, we used Raman and Fourier transform infrared (FTIR) spectroscopies to evaluate potential compositional changes in the same vitrinite locations pre- and post-BIB milling. The same locations also were examined by atomic force microscopy (AFM) to determine topographic changes caused by BIB milling (as expressed by the areal root-mean-square roughness parameter Rq). Samples consisted of four medium volatile bituminous coals. We used a non-aggressive BIB milling approach with conditions of [(5 min, 4 keV, 15°incline, 360° rotation at 25 rpm and 100%...
Geological models for petroleum generation suggest thermal conversion of oil-prone sedimentary organic matter in the presence of water promotes increased liquid saturate yield, whereas absence of water causes formation of an aromatic, cross-linked solid bitumen residue. To test the influence of exchangeable hydrogen from water, organic-rich (22 wt.% total organic carbon, TOC) mudrock samples from the Eocene lacustrine Green River Mahogany zone oil shale were pyrolyzed under hydrous and anhydrous conditions at temperatures between 300 and 370°C for 72 hrs. Petrographic approaches including optical microscopy, reflectance, Raman spectroscopy, and scanning electron and transmission electron microscopy, supplemented...
thumbnail
This study presents Raman spectroscopic data paired with scanning electron microscopy (SEM) to assess solid bitumen composition and porosity development as a function of solid bitumen texture and association with minerals. A series of hydrous pyrolysis experiments (1-103 days, 300-370°C) using a low maturity (0.25% solid bitumen reflectance, BRo), high total organic carbon [(TOC), 14.0 wt. %] New Albany Shale sample as the starting material yielded pyrolysis residues designed to evaluate the evolution of TOC, solid bitumen aromaticity, and organic porosity development with increasing temperature and heating duration. Solid bitumen was analyzed by Raman spectroscopy wherein point data was collected from accumulations...
thumbnail
Research examining organic-matter hosted porosity has significantly increased during the last ten years due to greater focus on understanding hydrocarbon migration and storage in source-rock reservoirs, and technological advances in scanning electron microscopy (SEM) capabilities. The examination of nanometer-scale organic-matter hosted porosity by SEM requires the preparation of exceptionally flat geologic samples beyond the abilities of traditional mechanical polishing which can deform or otherwise obscure organic surfaces. To meet this demand, broad ion beam (BIB) milling was introduced as a sample preparation technique for SEM petrographic analysis of geologic samples. But like with any sample preparation technique,...
thumbnail
The U.S. Geological Survey assessed undiscovered unconventional hydrocarbon resources reservoired in the Upper Cretaceous Tuscaloosa marine shale (TMS) of southern Mississippi and adjacent Louisiana in 2018. As part of the assessment, oil- source rock correlations were examined in the study area where operators produce light (38-45° API), sweet oil from horizontal, hydraulically-fractured wells in an overpressured ‘high-resistivity’ (>5 ohm-m) zone (HRZ) at the base of the TMS. Our initial characterization of TMS samples indicated overall low organic carbon (avg. TOC ~1.0%) and dominance of a gas-prone Type III or mixed Type II/III kerogen, potentially inconsistent with a self-sourced petroleum system model for...
thumbnail
This data release contains the boundaries of assessment units and input data for the assessment of undiscovered continuous oil and gas in the Upper Cretaceous Tuscaloosa Marine shale of the U.S. Gulf Coast. The Assessment Unit is the fundamental unit used in the National Assessment Project for the assessment of undiscovered oil and gas resources. The Assessment Unit is defined within the context of the higher-level Total Petroleum System. The Assessment Unit is shown herein as a geographic boundary interpreted, defined, and mapped by the geologist responsible for the province and incorporates a set of known or postulated oil and (or) gas accumulations sharing similar geologic, geographic, and temporal properties...
thumbnail
High-resolution scanning electron microscopy (SEM) visualization of sedimentary organic matter (SOM) is widely utilized in the geosciences for evaluation of microscale rock properties relevant to depositional environment, diagenesis, and the processes of fluid generation, transport, and storage. However, despite thousands of studies which have incorporated SEM approaches, the inability of SEM to differentiate SOM types has hampered the pace of scientific advancement. In this study, we show that SEM-cathodoluminescence (CL) properties can be used to identify and characterize SOM at low thermal maturity conditions. Eleven varied mudstone samples with a broad array of SOM types, ranging from the Paleoproterozoic to...
thumbnail
This study describes the application of organic petrology techniques to quantify the amount of coal and carbonaceous combustion by-products (i.e., coke, coal tar/pitch, cenospheres) in sediments taken from the Kinnickinnic River adjacent to the former site of the Milwaukee Solvay Coke and Gas Company. The site produced metallurgical coke and coal-gasification by-products from 1902-1983 and was assessed in 2001 as a potential Superfund site in part due to high levels of polycyclic aromatic hydrocarbons (PAHs) which readily absorb to coal and combustion by-products.
thumbnail
Imaging of Niobrara Formation and Mowry Shale samples from a range of thermal maturities provided observations and data on pore systems, organic matter (OM) types and associations with mineralogy and fabric, wettability, and microporosity associated with both diagenetic and detrital clays. Imaging techniques included scanning electron microscopy, organic petrography and correlative scanning electron microscopy, and mapping of mineralogy through energy dispersive spectroscopy.
thumbnail
Thirty-two organic-rich samples from the lower and upper shale members of the Devonian–Mississippian Bakken Formation were collected from eight cores across the Williston Basin, USA, at depths (~7,575–11,330 ft) representing immature through post peak oil/early condensate thermal maturity conditions. Reflectance results were correlated to programmed temperature pyrolysis parameters [hydrogen index (HI), production index (PI), Tmax], normal hydrocarbon and isoprenoid analysis of extractable organic matter (pristane/n-C17, phytane/n-C18) from GC analysis, and peak ratios from FTIR spectroscopy (branching ratio, A-factor).
thumbnail
Here the spatial variation in Raman estimates of thermal maturity within individual organic domains from several shale geologic reference materials originating from the Boquillas, Marcellus, Niobrara, and Woodford Formations are assessed from the respective Raman response. We show that for all four shales the thermal maturity parameters extracted from Raman spectra by iterative peak fitting can vary widely across distances of ≤5 µm within the same organic domain.
thumbnail
The U.S. Geological Survey assessed undiscovered petroleum resources in the downdip Paleogene formations of the U.S. Gulf Coast in 2018. During the assessment new data and information were collected to evaluate thermal maturity, source rock character, and unconventional reservoir rock prospectivity for the Cenozoic-aged section in south Louisiana. Samples were analyzed using multiple analytical approaches, including programmed pyrolysis (Rock-Eval), Leco TOC, organic petrographic analysis including vitrinite reflectance (Ro, %), and X-ray diffraction mineralogy. Associated abstract publication: Valentine, B.J., Elizalde, C., Enomoto, C.B., Hackley, P.C., 2015, Organic petrology and geochemistry of Tertiary and...
thumbnail
Shallow (300 ft or less) coal exploration drill-hole data from 692 wells located in Arkansas are provided in this data release. The well locations extend over nine Arkansas counties and were drilled between 1975 and 1977, primarily by Phillips Petroleum Company (Phillips). Also included in the dataset are 79 wells drilled by Tenneco. The data were donated to the U.S. Geological Survey (USGS) in 2001 by the North American Coal Corporation, which purchased the Phillips assets as part of a larger dataset. Under the terms of the agreement with North American Coal Corporation, the data were deemed proprietary until February 2011, a period of 10 years after the donation. The Arkansas data contained in this release were...
thumbnail
This data release contains Rock-Eval pyrolysis, organic petrographic (reflectance), and X-ray diffraction mineralogy data for subsurface Mesozoic rock samples from the eastern onshore Gulf Coast Basin (primarily Mississippi and Louisiana). Samples were analyzed in support of the U.S. Geological Survey (USGS) assessment of undiscovered petroleum resources in the Upper Cretaceous Tuscaloosa marine shale and evaluation of shale gas prospectivity in the Aptian section of the Mississippi Salt Basin.
thumbnail
This work investigates the characterization of bituminite (amorphous sedimentary organic matter) in Kimmeridge Clay source rock via confocal laser canning microscopy (CLSM) and atomic force microscopy (AFM). As part of an International Committee for Coal and Organic Petrology working group, an immature (0.42% vitrinite reflectance), organic-rich (44.1 wt.% total organic carbon content) sample of Kimmeridge Clay (sample KC-1) was distributed to multiple laboratories for CLSM characterization. Findings from AFM include the observation that surface roughening or surface flattening of bituminite are induced by differential broad ion beam (BIB) milling and are dependent on the location and scale of AFM topology measurement....


    map background search result map search result map Petroleum geology data from Mesozoic rock samples in the eastern U.S. Gulf Coast collected 2011 to 2017 High Microscale Variability in Raman Thermal Maturity Estimates from Shale Organic Matter - Data Release Petroleum geology data from Cenozoic rock samples in the eastern U.S. Gulf Coast collected 2014 to 2016 USGS Gulf Coast Petroleum Systems and National and Global Oil and Gas Assessment Projects-Louisiana-Mississippi Salt Basins and Western Gulf Provinces, Upper Cretaceous Tuscaloosa Marine Shale Assessment Unit Boundaries and Assessment Input Data Forms Oil-source rock correlation studies in the unconventional Upper Cretaceous Tuscaloosa marine shale petroleum system, Mississippi and Louisiana, USA (2019) Investigating the effects of broad ion beam milling to sedimentary organic matter Organic petrographic evaluation of carbonaceous material in sediments of the Kinnickinnic River, Milwaukee, WI, U.S.A. Reflectance and confocal laser scanning fluorescence spectroscopy of bituminite in Kimmeridge Clay TOC, Reflectance and Raman Data from Eocene Green River Mahogany zone Textural occurrence and organic porosity of solid bitumen in shales Organic petrology of Cretaceous Mowry and Niobrara source-rock reservoirs, Powder River Basin, Wyoming, USA Evaluation of pore-like features in sedimentary organic matter SEM-CL investigation of sedimentary organic matter samples Shallow Coal Exploration Drill-Hole Data for Arkansas Screening geochemistry, gas chromatography, and solid bitumen reflectance data in the Bakken petroleum system, Williston Basin, USA Reflectance and confocal laser scanning fluorescence spectroscopy of bituminite in Kimmeridge Clay High Microscale Variability in Raman Thermal Maturity Estimates from Shale Organic Matter - Data Release Oil-source rock correlation studies in the unconventional Upper Cretaceous Tuscaloosa marine shale petroleum system, Mississippi and Louisiana, USA (2019) Organic petrographic evaluation of carbonaceous material in sediments of the Kinnickinnic River, Milwaukee, WI, U.S.A. Shallow Coal Exploration Drill-Hole Data for Arkansas TOC, Reflectance and Raman Data from Eocene Green River Mahogany zone Petroleum geology data from Cenozoic rock samples in the eastern U.S. Gulf Coast collected 2014 to 2016 Screening geochemistry, gas chromatography, and solid bitumen reflectance data in the Bakken petroleum system, Williston Basin, USA Textural occurrence and organic porosity of solid bitumen in shales USGS Gulf Coast Petroleum Systems and National and Global Oil and Gas Assessment Projects-Louisiana-Mississippi Salt Basins and Western Gulf Provinces, Upper Cretaceous Tuscaloosa Marine Shale Assessment Unit Boundaries and Assessment Input Data Forms Petroleum geology data from Mesozoic rock samples in the eastern U.S. Gulf Coast collected 2011 to 2017 Organic petrology of Cretaceous Mowry and Niobrara source-rock reservoirs, Powder River Basin, Wyoming, USA Investigating the effects of broad ion beam milling to sedimentary organic matter Evaluation of pore-like features in sedimentary organic matter SEM-CL investigation of sedimentary organic matter samples