Skip to main content
Advanced Search

Filters: partyWithName: Karen Thorne (X)

Folders: ROOT > ScienceBase Catalog ( Show direct descendants )

26 results (81ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Coastal ecosystems have been identified by the International Panel on Climate Change (2007) as areasthat will be disproportionally affected by climate change. Recent sea-level rise projections range from 0.57to 1.1 m (Jevrejeva et al. 2012) or 0.75 to 1.9 m by Grinsted et al. (2010) and Vermeer and Rahmstorf(2009) by 2100, which are contingent upon the ambient temperature conditions and CO2 emissions. Sealevelrise projections for San Francisco Bay are 1.24 m by 2100 (Cayan et al. 2008). The expectedaccelerated rate of sea-level rise through the 21st century will put many coastal ecosystems at risk,especially those in topographically low-gradient areas.Sea-level rise response modeling was conducted at 12 tidal salt...
The aim of this USGS program is to provide site specific sea-level rise predictions to land managers through the intensive collection of field data and innovative predictive modeling. In 2009 and 2010, thousands of elevation and vegetation survey points were collected in salt marsh at 12 sites surrounding San Francisco Bay. The elevation data was synthesized into a continuous elevation model for each site, providing land owners valuable baseline data. This site hosts the project report, pages describing each of the 12 marshes visited in this study, and maps and GIS data for all of the marshes including high-resolution digital elevation models.
We evaluated the biogeomorphic processes of a large (309 ha) tidal salt marsh and examined factors that influence its ability to keep pace with relative sea-level rise (SLR). Detailed elevation data from 1995 and 2008 were compared with digital elevation models (DEMs) to assess marsh surface elevation change during this time. Overall, 37 % (113 ha) of the marsh increased in elevation at a rate that exceeded SLR, whereas 63 % (196 ha) of the area did not keep pace with SLR. Of the total area, 55 % (169 ha) subsided during the study period, but subsidence varied spatially across the marsh surface. To determine which biogeomorphic and spatial factors contributed to measured elevation change, we collected soil cores...
thumbnail
The research was conducted at nine tidal marshes in coastal estuaries spanning the Washington and Oregon coastlines from Padilla Bay in northern Washington to Bandon located at the mouth of the Coquille River in southern Oregon. We performed bathymetric surveys using a shallow-water echo-sounding system comprised of an acoustic profiler, Leica Viva RTK GPS, and laptop computer mounted on a shallow-draft, portable flat-bottom boat. The RTK GPS enabled high resolution elevations of the water surface. The rover positions were received from the Leica Smartnet system (www.lecia-geosystems.com) or base station and referenced to the same bench mark used in the elevation surveys. We mounted a variable frequency transducer...
Coastal areas are high-risk zones subject to the impacts of global climate change, with significant increases in the frequencies of extreme weather and storm events, and sea-level rise forecast by 2100. These physical processes are expected to alter estuaries, resulting in loss of intertidal wetlands and their component wildlife species. In particular, impacts to salt marshes and their wildlife will vary both temporally and spatially and may be irreversible and severe. Synergistic effects caused by combining stressors with anthropogenic land-use patterns could create areas of significant biodiversity loss and extinction, especially in urbanized estuaries that are already heavily degraded. In this paper, we discuss...
This set of elevation models was developed to understand current (2010) conditions of San Francisco salt marshes and for input into sea-level rise prediction models. These elevation models were built by interpolating surveyed elevation points. The elevation surveys were conducted with a Leica RX1230 Real-Time Kinematic GPS which is capable of < 2 cm vertical accuracy.
We used a first-of-its-kind comprehensive scenario approach to evaluate both the vertical and horizontal response of tidal wetlands to projected changes in the rate of sea-level rise (SLR) across 14 estuaries along the Pacific coast of the continental United States. Throughout the U.S. Pacific region, we found that tidal wetlands are highly vulnerable to end-of-century submergence, with resulting extensive loss of habitat. Using higher-range SLR scenarios, all high and middle marsh habitats were lost, with 83% of current tidal wetlands transitioning to unvegetated habitats by 2110. The wetland area lost was greater in California and Oregon (100%) but still severe in Washington, with 68% submerged by the end of the...
This project uses bottom-up modeling at a parcel scale to measure the effects of sea-level rise (SLR) on coastal ecosystems and tidal salt marshes. At selected tidal marshes, the project team will measure several parameters that will be incorporated into ArcGIS models creating comparable datasets across the Pacific coast tidal gradient with a focus on 2-4 sites in the California LCC (e.g. San Diego, San Francisco Bay Refuges). The ultimate goal is to provide science support tools for local adaptation planning from the bottom-up that may be implemented under a structured decision-making framework.Science Delivery Phase (2013): The objectives are to: (1) Disseminate site-specific baseline data and modeling results,...
Categories: Data, Project; Tags: 2011, 2013, Applications and Tools, CA, CA-Northern, All tags...
The USGS Coastal Ecosystem Response to Climate Change (CERCC) began in 2008 to deliver sea - level rise ecological response mod- els at a scale relevant for resource managers. Work was originally focused on the San Fran- cisco Bay estuary and then expanded to en- compass other Pacific coast sites. Our goal is to provide site specific measurements and results that land managers, planners, and those concerned with the conservation of near- shore habitats can use to make well - informed climate change adaptation strategies and deci- sions.
March 19, 2014 12:00-1:00 pm PSTSpeaker Glen MacDonald, Director of the UCLA Institute for the Environment and Sustainability.This webinar presents some basics on potential rates and magnitudes of relative sea level rise along the California coast over the 21st century as influenced by climate change, tectonics and other related factors. The potential accretion rates of selected marshes relative to anticipated sea level rise will be outlined and a multidisciplinary joint USGS-UCLA project to study past, present and future marsh response to sea level changes will be described.
thumbnail
Mangroves are forested tidal wetlands that occur in tropical, sub-tropical, and warm temperate coastal regions around the world. Mangroves occupy a significant area of coastlines globally and provide important ecosystem services to humans and wildlife. These services include aesthetic value, storm protection, food provisioning, recreation, critical wildlife habitat, and biological carbon sequestration. However, mangrove wetlands are being lost globally due to both human development and sea level rise. Since mangroves provide numerous services and protections to society, the influences of environmental change on these ecosystems need to be understood so that effective management action can be taken. This project...
thumbnail
Sea-level rise will eventually flood and kill many coastal mangrove trees. The loss of mangrove forests will strongly affect human populations on isolated western Pacific islands as they rely heavily on mangroves for food, such as fish, shrimp, and crabs; building materials; and fire wood. Mangroves also shelter coastal communities from the impacts of tsunamis and cyclones, are home to endangered species such as the Yapese monarch and flying fox, and remove and store CO2 from the atmosphere. In the past, mangroves have adjusted to sea-level rise through tree root growth and the accumulation of sediments from rivers and oceans, processes which allow them to maintain their forest floor elevation relative to sea level....
This September, 2014 article in the Orange County Register highlights the project “Sea-level rise modeling across the California salt marsh gradient”.
In California, the near-shore area where the ocean meets the land is a highly productive yet sensitive region that supports a wealth of wildlife, including several native bird species. These saltmarshes, mudflats, and shallow bays are not only critical for wildlife, but they also provide economic and recreational benefits to local communities. Today, sea-level rise, more frequent and stronger storms, saltwater intrusion, and warming water temperatures are among the threats that are altering these important habitats.To support future planning and conservation of California’s near-shore habitats, researchers examined current weather patterns, elevations, tides, and sediments at these sites to see how they affect plants...
Salt marsh elevation and geomorphic stability depends on mineral sedimentation. Many Mediterranean-climate salt marshes along southern California, USA coast import sediment during El Niño storm events, but sediment fluxes and mechanisms during dry weather are potentially important for marsh stability. We calculated tidal creek sediment fluxes within a highly modified, sediment-starved, 1.5-km2 salt marsh (Seal Beach) and a less modified 1-km2 marsh (Mugu) with fluvial sediment supply. We measured salt marsh plain suspended sediment concentration and vertical accretion using single stage samplers and marker horizons. At Seal Beach, a 2014 storm yielded 39 and 28 g/s mean sediment fluxes and imported 12,000 and 8800...
thumbnail
Estuaries are located at the interface where rivers meet the sea, creating unique ecosystems with complex physical and biological processes. Coastal wetlands provide essential ecosystem services to people, including flood protection from high tides and storm surges, commercial fisheries, carbon sequestration, improved water quality, and wildlife food and habitat. Coastal wetlands are also home to hundreds of migratory and resident wildlife species including threatened and endangered species of management concern. Wetlands also have the unique ability to increase their elevation relative to sea-level rise, therefore protecting nearby communities from flooding. In California, prolonged drought and extreme storm events...
thumbnail
In the Pacific Northwest, coastal ecosystems are highly productive areas that support millions of migratory waterbirds, shellfish, salmon and related fish. These species depend on food and habitats provided by estuaries (coastal tidal areas where streams and rivers flow into the ocean) for successful migration and breeding. Climate change effects such as drought, sea-level rise, and changing freshwater flow, precipitation, and temperatures will alter these important habitats. This study examined how changing ocean and freshwater patterns and conditions will influence estuary habitats. The main goal was to provide scientific support for future planning efforts and conservation of natural resources found in coastal...
In the Pacific Northwest, coastal wetlands support a wealth of ecosystem services including habitat provision for wildlife and fisheries and flood protection. The tidal marshes, mudflats, and shallow bays of coastal estuaries link marine, freshwater, and terrestrial habitats, and provide economic and recreational benefits to local communities. Climate change effects such as sea-level rise are altering these habitats, but we know little about how these areas will change over the next 50–100 years. Our study examined the effects of sea-level rise on nine tidal marshes in Washington and Oregon between 2012 and 2015, with the goal of providing scientific data to support future coastal planning and conservation. We compiled...
Climate change, when combined with more conventional stress from human exploitation, calls into question the capacity of both existing ecological communities and resource management institutions to experience disturbances while substantially retaining their same functions and identities. In other words, the physical and biological effects of climate change raise fundamental challenges to the resilience of natural ecosystems. Perhaps more importantly, the projected scope of ecological shifts from global climate change — and uncertainty about such changes — significantly stresses the capacity of legal institutions to manage ecosystem change. Existing governmental institutions lack the adaptive capacity to manage such...
thumbnail
To assess the current topography of tidal marsh at the study sites we conducted survey-grade global positioning system (GPS) surveys between 2009 and 2014 using a Leica RX1200 Real Time Kinematic (RTK) rover (±1 cm horizontal, ±2 cm vertical accuracy; Leica Geosystems Inc., Norcross, GA; Figure 4). At sites with RTK GPS network coverage (Padilla, Port Susan, Nisqually, Siletz, Bull Island, and Bandon), rover positions were received in real time from the Leica Smartnet system via a CDMA modem (www.lecia-geosystems.com). At sites without network coverage (Skokomish, Grays Harbor, and Willapa), rover positions were received in real time from a Leica GS10 antenna base station via radio link. At sites where we used the...


map background search result map search result map Understanding the Impacts of Ecological Drought on Estuaries in the Pacific Northwest Climate Extremes and Ecological Impacts to California Estuaries Elevation Points for Eight Study Areas in Coastal Oregon and Washington, 2012 Bathymetry Digital Elevation Models for Eight Study Areas in Coastal Oregon and Washington, 2012 The Future Resiliency of Mangrove Forests to Sea-Level Rise in the Western Pacific: Initiating a National Assessment Approach Science to Inform the Management of Mangrove Ecosystems Undergoing Sea Level Rise at Ding Darling National Wildlife Refuge, Sanibel Island, Florida Science to Inform the Management of Mangrove Ecosystems Undergoing Sea Level Rise at Ding Darling National Wildlife Refuge, Sanibel Island, Florida Understanding the Impacts of Ecological Drought on Estuaries in the Pacific Northwest The Future Resiliency of Mangrove Forests to Sea-Level Rise in the Western Pacific: Initiating a National Assessment Approach Elevation Points for Eight Study Areas in Coastal Oregon and Washington, 2012 Bathymetry Digital Elevation Models for Eight Study Areas in Coastal Oregon and Washington, 2012 Climate Extremes and Ecological Impacts to California Estuaries