Skip to main content
Advanced Search

Filters: partyWithName: Colorado Natural Heritage Program (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > North Central CASC ( Show direct descendants )

12 results (12ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__National and Regional Climate Adaptation Science Centers
___North Central CASC
View Results as: JSON ATOM CSV
Projected suitable habitat models were constructed in randomForest (R package, version 4.6-10) using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario. Modeled past suitable habitat and modeled future suitable habitat are combined to show areas of change, using various thresholds to distinguish change categories, as well as current mapped pinyon occupied...
Projected suitable habitat models were constructed in randomForest (R package, version 4.6-10) using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario. Modeled past suitable habitat and modeled future suitable habitat are combined to show areas of change, using various thresholds to distinguish change categories, as well as current mapped J. osteosperma...
Projected suitable habitat models were constructed in Maxent (version 3.3; Phillips et al. 2004, 2006) using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario. Modeled past suitable habitat and modeled future suitable habitat are combined to show areas of change, using various thresholds to distinguish change categories, as well as current mapped...
Projected suitable habitat models were constructed in randomForest (R package, version 4.6-10) using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario. Modeled past suitable habitat and modeled future suitable habitat are combined to show areas of change, using various thresholds to distinguish change categories, as well as current mapped J. osteosperma...
Projected suitable habitat models were constructed in Maxent (version 3.3; Phillips et al. 2004, 2006) using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario. Modeled past suitable habitat and modeled future suitable habitat are combined to show areas of change, using various thresholds to distinguish change categories, as well as current mapped...
Projected suitable habitat models were constructed in Maxent (version 3.3; Phillips et al. 2004, 2006) using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario. Modeled past suitable habitat and modeled future suitable habitat are combined to show areas of change, using various thresholds to distinguish change categories, as well as current mapped...
thumbnail
Projected suitable habitat models were constructed in Maxent (version 3.3; Phillips et al. 2004, 2006) using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario. Modeled past suitable habitat and modeled future suitable habitat are combined to show areas of change, using various thresholds to distinguish change categories, as well as current mapped...
Projected suitable habitat models were constructed in randomForest (R package, version 4.6-10) using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario. Modeled past suitable habitat and modeled future suitable habitat are combined to show areas of change, using various thresholds to distinguish change categories, as well as current mapped pinyon occupied...
Projected suitable habitat models were constructed in Maxent (version 3.3; Phillips et al. 2004, 2006) using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario. Modeled past suitable habitat and modeled future suitable habitat are combined to show areas of change, using various thresholds to distinguish change categories, as well as current mapped...
Projected suitable habitat models were constructed in randomForest (R package, version 4.6-10) using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario. Modeled past suitable habitat and modeled future suitable habitat are combined to show areas of change, using various thresholds to distinguish change categories, as well as current mapped J. osteosperma...
Projected suitable habitat models were constructed in Maxent (version 3.3; Phillips et al. 2004, 2006) using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario. Modeled past suitable habitat and modeled future suitable habitat are combined to show areas of change, using various thresholds to distinguish change categories, as well as current mapped...
Projected suitable habitat models were constructed in randomForest (R package, version 4.6-10) using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario. Modeled past suitable habitat and modeled future suitable habitat are combined to show areas of change, using various thresholds to distinguish change categories, as well as current mapped pinyon occupied...


    map background search result map search result map Artemisia tridentata spp. vaseyana Feast/Famine Scenario Change Categories (2035) Artemisia tridentata spp. vaseyana Feast/Famine Scenario Change Categories (2035)