Skip to main content
Advanced Search

Filters: Tags: thermal (X)

28 results (675ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The temperature and surface geophysical data contained in this release have primarily been collected to support groundwater/surface water methods development, and to characterize the hydrogeological controls on native brook trout habitat. All data have been collected since 2010 along the Quashnet River corridor located on Cape Cod, MA, USA. Cape Cod is a peninsula in southeastern coastal Massachusetts, USA, composed primarily of highly permeable unconsolidated glacial moraine and outwash deposits. The largest of the Cape Cod sole-source aquifers occupies a western (landward) section of the peninsula, and is incised by several linear valleys that drain groundwater south to the Atlantic Ocean via baseflow-dominated...
thumbnail
Common offset ground penetrating radar (GPR) data were collected to image near surface streambed structure. These data are to be used in conjunction with fiber-optic distributed temperature sensing (FO-DTS) and electromagnetic imaging (EMI) data. The combined dataset represents point in time mapping of preferential groundwater discharge points (FO-DTS) and the bed structure that controls where these points are located (GPR, EMI).
The Southern Appalachian forest region of the U.S.-a region responsible for 23% of U.S. coal production-has 24 billion metric tons of high quality coal remaining of which mountaintop coal mining (MCM) will be the primary extraction method. Here we consider greenhouse gas emissions associated with MCM terrestrial disturbance in the life-cycle of coal energy production. We estimate disturbed forest carbon, including terrestrial soil and nonsoil carbon using published U.S. Environmental Protection Agency data of the forest floor removed and U.S. Department of Agriculture - Forest Service inventory data. We estimate the amount of previously buried geogenic organic carbon brought to the soil surface during MCM using...
thumbnail
The Sea Surface Temperature (SST) data of the nearshore region of the North Pacific show temperature ranges in degrees C using points whose locations correspond to the centroids of AVHRR Pathfinder version 5 monthly, global, 4 km data set (PFSST V50). The pathfinder rasters are available from the Physical Oceanography Distributed Active Archive Center (PO.DAAC), hosted by NASA JPL. The data points in this dataset lie within a 20 km buffer from the GSHHS (Global Self-consistent, Hierarchical, High-resolution Shoreline) coastline. The GSHHS vector data are available from the National Geophysical Data Center (NGDC). Furthermore, each point in the SST dataset is categorized by the ecoregion in which it is located. This...
thumbnail
As part of their Watershed Function Scientific Focus Area (SFA), Berkeley Lab and its collaborating institutions (e.g., USGS) have established a "Community Watershed" in the headwaters of the East River near Crested Butte, Colorado (USA), designed to quantify processes impacting the ability of mountainous systems to retain and release water, nutrients, carbon, and metals. The ongoing research spans a range of scales from hillslope to catchment to basin, with surface water and groundwater linking multiple geomorphic compartments. A major goal of this SFA research is to generate a transferable understanding of mountain hillslope to river dissolved nutrient, carbon, and metals transport, integrating extensive and novel...
thumbnail
The extraction of unconventional oil and gas (UOG) resources often produces highly saline waste waters, which can be released to the river corridor environment during spills and pipe leakage. In North Dakota, USA more than 8,000 spills were recorded from 2008-2015, and more than half of those spills were related to pipelines. Data collected for this study were related to UOG wastewater leakage from a pipeline into a creek in the Williston Basin, North Dakota discovered on the January 6th, 2015. Although the spill was followed by extensive remediation efforts, we conducted geophysical surveys in June 2017 to assess the potential for waste water retention along the Blacktail Creek corridor as part of a larger evaluation...
thumbnail
Hand-carried frequency domain electromagnetic imaging (EMI) data were collected along the Sanuit River to indicate changes in streambed water quality and/or near surface sediments. These data are to be used in conjunction with fiber-optic distributed temperature sensing (FO-DTS) and ground penetrating radar (GPR) data. The combined dataset represents point in time mapping of preferential groundwater discharge points (FO-DTS), and the bed structure that controls where these points are located (GPR, EMI).
thumbnail
Fiber-optic distributed temperature sensing (FO-DTS) cables were deployed along the sediment/water interface to map high spatial resolution temperature variations along the streambed. These variations are used to detect zones of groundwater discharge. Data are to be used in conjunction with electromagnetic imaging (EMI) and ground penetrating radar (GPR) data. The combined dataset represents point in time mapping of preferential groundwater discharge points (FO-DTS), and the bed structure that controls where these points are located (GPR, EMI).
thumbnail
Quantitative evaluation of groundwater/surface water exchange dynamics is universally challenging in large river systems, because existing physical methodology often does not yield spatially-distributed data and is difficult to utilize in deeper water. Here we apply combined frequency domain electromagnetic induction (EMI) and direct contact vertical electrical sounding (VES) measurements to identify shallow, fresh groundwater discharge to the Colorado River through a 4 km2 wetland that borders the town of Moab, Utah, USA. EMI data were collected by a mobile tool that was hand carried or floated on the back of a kayak, providing extensive spatial coverage for the upper approximate 5 m of river channel/sediments....
thumbnail
This dataset has been archived; it has been superseded by version 2.0 (May 2022) which can be found at https://doi.org/10.5066/P97HDPAY. Near-surface geophysical data from within the Bonita Peak Mining District in Silverton, Colorado, USA are presented. The data include fiber optic distributed temperature sensing (FO-DTS) and frequency domain electromagnetic induction (FDEM) data collected in and around roughly 1 km reaches of Cement Creek and California Gulch. Additional data, including ground penetrating radar (GPR) and self potential (SP), were gathered from a peatland that intercepts acid mine drainage from Mogul Mine into Cement Creek. The peatland is located off the eastern bank of Cement Creek in the northern...
Two-thirds of input energy for electricity generation in the USA is lost as heat during conversion processes. Additionally, 12.5% of primary fuel and 20.3% of electricity are employed for space heating, water heating, and refrigeration where low-grade heat could suffice. The potential for harnessing waste heat from power generation and thermal processes to perform such tasks is assessed. By matching power plant outlet streams with applications at corresponding temperature ranges, sufficient waste heat is identified to satisfy all USA space and water heating needs. Sufficient high temperature exhaust from power plants is identified to satisfy 27% of residential air conditioning with thermally activated refrigeration,...
The Sea Surface Temperature (SST) data of the nearshore region of the North Pacific show temperature ranges in degrees C using points whose locations correspond to the centroids of AVHRR Pathfinder version 5 monthly, global, 4 km data set (PFSST V50). The pathfinder rasters are available from the Physical Oceanography Distributed Active Archive Center (PO.DAAC), hosted by NASA JPL. The data points in this dataset lie within a 20 km buffer from the GSHHS (Global Self-consistent, Hierarchical, High-resolution Shoreline) coastline. The GSHHS vector data are available from the National Geophysical Data Center (NGDC). Furthermore, each point in the SST dataset is categorized by the ecoregion in which it is located. This...
thumbnail
This data release contains geophysical data collected at the Little Wind River site near Riverton, Wyoming in 2015 and 2017. The dataset contains:[1] Fiber Optic Distributed Temperature Sensing data (FO-DTS, August-September 2015) collected in the water along the river bank, [2] Electrical Resistivity Tomography data (ERT, August 2017) collected on land near the river bank, and [3] Frequency domain Electromagnetic Induction (EMI, August 2017) data collected along the river and more extensively throughout the study region. Data for each of these methods can be found in the child items linked below.
thumbnail
The Sea Surface Temperature (SST) data of the nearshore region of the North Pacific show temperature ranges in degrees C using points whose locations correspond to the centroids of AVHRR Pathfinder version 5 monthly, global, 4 km data set (PFSST V50). The pathfinder rasters are available from the Physical Oceanography Distributed Active Archive Center (PO.DAAC), hosted by NASA JPL. The data points in this dataset lie within a 20 km buffer from the GSHHS (Global Self-consistent, Hierarchical, High-resolution Shoreline) coastline. The GSHHS vector data are available from the National Geophysical Data Center (NGDC). Furthermore, each point in the SST dataset is categorized by the ecoregion in which it is located. This...
thumbnail
The Sea Surface Temperature (SST) data of the nearshore region of the North Pacific show temperature ranges in degrees C using points whose locations correspond to the centroids of AVHRR Pathfinder version 5 monthly, global, 4 km data set (PFSST V50). The pathfinder rasters are available from the Physical Oceanography Distributed Active Archive Center (PO.DAAC), hosted by NASA JPL. The grid cells in this dataset lie within a 20 km buffer from the GSHHS (Global Self-consistent, Hierarchical, High-resolution Shoreline) coastline. The GSHHS vector data are available from the National Geophysical Data Center (NGDC). These data have been QA'd in that we have selected only data values with associated quality flags of...
thumbnail
1D transient numerical simulations with a modified version of the SUTRA model (preliminary code) that accounts for variably-saturated freeze-thaw dynamics (e.g. McKenzie and Voss, 2013) to predict annual alluvial aquifer temperature dynamics using coupled fluid and heat transport physics. The model simulations were run with a modified version of SUTRA_ICE (unreleased) that accomadates a time-variable sinusiodal upper temperature boundary. This data release also includes the source code and Argus One GUI files used to build the models, though this proprietary software is not needed to run the models as described in the upper-level "readme" file.
thumbnail
Heat is used as a tracer for a variety of physical hydrogeological process. For ongoing studies related to groundwater/surface water exchange, temperatures of streambed sediment along the bank, in drainage ditches, and in the river were measured using handheld thermal infrared (FLIR Systems, Inc) cameras and thermocouple (Digi-Sense, Inc) probes. Thermal surveys of the Quashnet river were completed from August 14 to August 25, 2017. Zones of spatially-preferential groundwater discharge were identified as cold anomalies in summer, reflecting the influence from groundwater temperatures of approximately 11 degrees Celsius.
thumbnail
The data set includes temperature data from the base of the water column along the sediment interface of the East River near Crested Butte Colorado, USA, in support of ongoing study regarding groundwater/surface water exchange. The data were collected from 08/09/2016 to 08/31/2016 using a fiber-optic distributed temperature sensing system that has 1.01 m spatial resolution along the linear fiber-optic cable. During data analysis, the original 10 min measurments were averaged (arithmetic mean) for the entire period to potentially indicate colder groundwater inflows. Additionally, the standard devation for the entire measurement period for each distance along the cable was calculated to indicate buffered zones (reduced...
thumbnail
Heat is used as a tracer for a variety of physical hydrogeological process. Several types of instruments are used to measure the temperature of surface water and saturated sediments. In the Quashnet River we have been using methods that include: infrared, fiber-optic distributed temperature sensing, and individual logging thermistors. The latter type of data (thermistor) are described and presented here.
thumbnail
Surface geophysical tools remotely sense hydrogeological properties that can control subsurface flow and water quality. There are numerous geophysical tools, for the Quashnet River work we have principally used ground penetrating radar (GPR) and electromagnetic imaging (EMI). The instruments are either hand carried or floated down the stream channel and other cross-sections of the river corridor. Data from various field deployments of GPR and EMI are described and presented here.