This data release provides remotely sensed data, field measurements, and MATLAB code associated with an effort to produce image-derived velocity maps for a reach of the Sacramento River in California's Central Valley. Data collection occurred from September 16-19, 2024, and involved cooperators from the Intelligent Robotics Group from the National Aeronautics and Space Administration (NASA) Ames Research Center and the National Oceanographic and Atmospheric Administration (NOAA) Southwest Fisheries Science Center.
The remotely sensed data were obtained from an Uncrewed Aircraft System (UAS) and are stored in Robot Operating System (ROS) *.bag files. Within these files, the various data types are organized into ROS topics including: images from a thermal camera, measurements of the distance from the UAS down to the water surface made with a laser range finder, and position and orientation data recorded by a Global Navigation Satellite System (GNSS) receiver and Inertial Measurement Unit (IMU) during the UAS flights. This instrument suite is part of an experimental payload called the River Observing System (RiOS) designed for measuring streamflow and further detail is provided in the metadata file associated with this data release. For the September 2024 test flights, the RiOS payload was deployed from a DJI Matrice M600 Pro hexacopter hovering approximately 270 m above the river. At this altitude, the thermal images have a pixel size of approximately 0.38 m but are not geo-referenced. Two types of ROS *.bag files are provided in separate zip folders. The first, Baguettes.zip, contains "baguettes" that include 15-second subsets of data with a reduced sampling rate for the GNSS and IMU. The second, FullBags.zip, contains the full set of ROS topics recorded by RiOS but have been subset to include only the time ranges during which the UAS was hovering in place over one of 11 cross sections along the reach. The start times are included in the *.bag file names as portable operating system interface (posix) time stamps. To view the data within ROS *.bag files, the Foxglove Studio program linked below is freely available and provides a convenient interface. Note that to view the thermal images, the contrast will need to be adjusted to minimum and maximum values around 12,000 to 15,000, though some further refinement of these values might be necessary to enhance the display.
To enable geo-referencing of the thermal images in a post-processing mode, another M600 hexacopter equipped with a standard visible camera was deployed along the river to acquire images from which an orthophoto was produced: 20240916_SacramentoRiver_Ortho_5cm.tif. This orthophoto has a spatial resolution of 0.05 m and is in the Universal Transverse Mercator (UTM) coordinate system, Zone 10N. To assess the accuracy of the orthophoto, 21 circular aluminum ground control targets visible in both thermal and RGB (red, green, blue) images were placed in the field and their locations surveyed with a Real-Time Kinematic (RTK) GNSS receiver. The coordinates of these control points are provided in the file SacGCPs20240916.csv. Please see the metadata for additional information on the camera, the orthophoto production process, and the RTK GNSS survey.
The thermal images were used as input to Particle Image Velocimetry (PIV) algorithms to infer surface flow velocities throughout the reach. To assess the accuracy of the resulting image-derived velocity estimates, field measurements of flow velocity were obtained using a SonTek M9 acoustic Doppler current profiler (ADCP). These data were acquired along a series of 11 cross sections oriented perpendicular to the primary downstream flow direction and spaced approximately 150 m apart. At each cross section, the boat from which the ADCP was deployed made four passes across the channel and the resulting data was then aggregated into mean cross sections using the Velocity Mapping Toolbox (VMT) referenced below (Parsons et al., 2013). The VMT output was further processed as described in the metadata and ultimately led to a single comma delimited text file, SacAdcp20240918.csv, with cross section numbers, spatial coordinates (UTM Zone 10N), cross-stream distances, velocity vector components, and water depths.
To assess the sensitivity of thermal image velocimetry to environmental conditions, air and water temperatures were recorded using a pair of Onset HOBO U20 pressure transducer data loggers set to record pressure and temperature. Deploying one data logger in the air and one in the water also provided information on variations in water level during the test flights. The resulting temperature and water level time series are provided in the file HoboDataSummary.csv with a one-minute sampling interval.
These data sets were used to develop and test a new framework for mapping flow velocities in river channels in approximately real time using images from an UAS as they are acquired. Prototype code for implementing this approach was developed in MATLAB and is also included in the data release as a zip folder called VelocityMappingCode.zip. Further information on the individual functions (*.m files) included within this folder is available in the metadata file associated with this data release. The code is provided as is and is intended for research purposes only.
Users are advised to thoroughly read the metadata file associated with this data release to understand the appropriate use and limitations of the data and code provided herein.