Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > North Central CASC > FY 2018 Projects > Characterizing Historic Streamflow to Support Drought Planning in the Upper Missouri River Basin ( Show direct descendants )

17 results (92ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__National and Regional Climate Adaptation Science Centers
___North Central CASC
____FY 2018 Projects
_____Characterizing Historic Streamflow to Support Drought Planning in the Upper Missouri River Basin
Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
In recent decades, Rocky Mountain accumulated snowpack levels have experienced rapid declines, yet long-term records of snowpack prior to the installation of snowpack observation stations in the early and mid 20th century are limited. To date, a small number of tree-ring based reconstructions of April 1 Snow Water Equivalent (SWE) in the northern Rocky Mountains have extended modern records of snowpack variability to ~1200 C.E. Carbonate isotope lake sediment records, provide an opportunity to further extend tree-ring based reconstructions through the Holocene, providing a millennial-scale temporal record that allows for an evaluation of multi-scale drivers of snowpack variability, from internal climate dynamics...
Abstract (from ScienceDirect): Paleohydrologic records can provide unique, long-term perspectives on streamflow variability and hydroclimate for use in water resource planning. Such long-term records can also play a key role in placing both present day events and projected future conditions into a broader context than that offered by instrumental observations. However, relative to other major river basins across the western United States, a paucity of streamflow reconstructions has to date prevented the full application of such paleohydrologic information in the Upper Missouri River Basin. Here we utilize a set of naturalized streamflow records for the Upper Missouri and an expanded network of tree-ring records...
Abstract (from PNAS): Recent decades have seen droughts across multiple US river basins that are unprecedented over the last century and potentially longer. Understanding the drivers of drought in a long-term context requires extending instrumental data with paleoclimatic data. Here, a network of new millennial-length streamflow reconstructions and a regional temperature reconstruction from tree rings place 20th and early 21st century drought severity in the Upper Missouri River basin into a long-term context. Across the headwaters of the United States’ largest river basin, we estimated region-wide, decadal-scale drought severity during the “turn-of-the-century drought” ca. 2000 to 2010 was potentially unprecedented...
thumbnail
Paleohydrologic records provide a valuable perspective on the variability of streamflow and hydroclimate that is critical for water resource planning and placing present day and future conditions into a long-term context. Until now, key insights gained from streamflow reconstructions in the other river basins across the Western U.S. have been lacking in the Milk and St. Mary River Basin. Here we utilize a new database of naturalized streamflow records for the Milk and St. Mary Rivers and an expanded network of tree-ring records from the region to reconstruct streamflow at eight gaging locations located in the mountains, foothills, and plains reaches of the basins. The network of streamflow reconstructions presented...
To characterize eruption activity of the iconic Old Faithful Geyser in Yellowstone National Park over past centuries, we obtained 41 new radiocarbon dates of mineralized wood preserved in the mound of silica that precipitated from erupted waters. Trees do not grow on active geyser mounds, implying that trees grew on the Old Faithful Geyser mound during a protracted period of eruption quiescence. Rooted stumps and root crowns located on higher parts of the mound are evidence that at the time of tree growth, the geyser mound closely resembled its current appearance. The range of calibrated radiocarbon dates (1233–1362 CE) is coincident with a series of severe multidecadal regional droughts toward the end of the Medieval...
Categories: Publication; Types: Citation
Welcome to the North American Seasonal Precipitation Atlas. This web application provides access to cool- and warm-season reconstructions of total precipitation and the standardized precipitation index on a 0.5° latitude/longitude grid centered over North America from AD 0000-2016. Maps and time series can be created using tools under the "Maps" and "Time Series" menus, respectively. For details on how to create maps and time series, see the "Help" menu. An animation that runs through each year of the reconstruction from AD 0000-2016 is available via the web application. Questions, comments, or suggestions may be sent to Dorian J. Burnette. The entire dataset can be downloaded from NOAA Paleoclimatology.
The Milk and St. Mary Rivers are international waterways straddling the United States and Canada and traversing four Tribal Nations before draining into the Missouri and South Saskatchewan Rivers respectively. Management of water resources in the region is challenged by the complexity of stakeholder interests, the limitations of existing management infrastructure, and by a limited characterization of the long-term streamflow and hydroclimatic variability across the area. We used existing records of natural streamflow to investigate the relationships between seasonal climate variability and differences in the timing and volume of flow from the headwaters to the prairie tributaries. Then, using a network of tree-ring...
Categories: Publication; Types: Citation
thumbnail
This archived Paleoclimatology Study is available from the NOAA National Centers for Environmental Information (NCEI), under the World Data Service (WDS) for Paleoclimatology. The associated NCEI study type is Climate Reconstruction. The data include parameters of climate reconstructions|instrumental|tree ring with a geographic location of North America. The time period coverage is from 1150 to -65 in calendar years before present (BP). See metadata information for parameter and study location details. Please cite this study when using the data.
In recent decades, Rocky Mountain accumulated snowpack levels have experienced rapid declines, yet long-term records of snowpack prior to the installation of snowpack observation stations in the early and mid 20th century are limited. To date, a small number of tree-ring based reconstructions of April 1 Snow Water Equivalent (SWE) in the northern Rocky Mountains have extended modern records of snowpack variability to ∼1200 C.E. Carbonate isotope lake sediment records, provide an opportunity to further extend tree-ring based reconstructions through the Holocene, providing a millennial-scale temporal record that allows for an evaluation of multi-scale drivers of snowpack variability, from internal climate dynamics...
Categories: Publication; Types: Citation
thumbnail
Note: this data release has been deprecated. Find the new version here: https://doi.org/10.5066/P9QCLGKM. This NetCDF represents the monthly inputs and outputs from a United States Geological Survey water-balance model (McCabe and Wolock, 2011) for the conterminous United States for the period 1895-01-01 to 2020-12-31. The source data used to run the water balance model is based on the National Oceanic and Atmospheric Administration's(NOAA, 2020) ClimGrid data for precipitation and temperature. This NetCDF contains the following monthly inputs: temperature (degrees Celsius) and precipitation (millimeters, mm) and the following outputs (all in mm): runoff, soil moisture storage, actual evapotranspiration, potential...
This project combined tree-ring based paleo and modern climate and hydrologic research aimed at understanding the primary influences on drought risk and water reliability in basins critical for western U.S. water resources. New paleohydrologic datasets and analyses were developed and applied to contextualize future streamflow projections and address specific water management questions. These questions centered around optimizing future water management protocols for numerous objectives ranging from improving agricultural water allocation during drought while maintaining instream flows for aquatic ecosystem health to the testing of operations across large river systems with complex infrastructure critical for downstream...
Categories: Publication; Types: Citation


    map background search result map search result map Approved DataSets NOAA/WDS Paleoclimatology - Northern Rockies 2,200 Year Snow Water Equivalent Reconstructions A network of eight naturalized streamflow reconstructions for the Milk and St Mary Rivers spanning years 1017 – 1998 CE USGS monthly water balance model inputs and outputs for the conterminous United States, 1895-2020, based on ClimGrid data NOAA/WDS Paleoclimatology - Upper Missouri River Basin 1,200 Year Streamflow Reconstructions Approved DataSets A network of eight naturalized streamflow reconstructions for the Milk and St Mary Rivers spanning years 1017 – 1998 CE NOAA/WDS Paleoclimatology - Upper Missouri River Basin 1,200 Year Streamflow Reconstructions NOAA/WDS Paleoclimatology - Northern Rockies 2,200 Year Snow Water Equivalent Reconstructions USGS monthly water balance model inputs and outputs for the conterminous United States, 1895-2020, based on ClimGrid data