Skip to main content
Advanced Search

Filters: Tags: hazard preparedness (X)

150 results (16ms)   

View Results as: JSON ATOM CSV
thumbnail
LANDFIRE's (LF) 2022 update (LF 2022) Existing Vegetation Cover (EVC) represents the vertically projected percent cover of the live canopy for a 30-m cell. EVC is produced separately for tree, shrub, and herbaceous lifeforms. Training data depicting percentages of canopy cover are obtained from plot-level ground-based visual assessments and lidar observations. These are combined with Landsat imagery (from multiple seasons), to inform models built independently for each lifeform. Tree, shrub, and herbaceous lifeforms each have a potential range from 10% to 100% (cover values less than 10% are binned into the 10% value). The three independent lifeform datasets are merged into a single product based on the dominant...
thumbnail
LANDFIRE (LF) disturbance products are developed to provide temporal and spatial information related to landscape change. Historical Disturbance (HDist) is developed from the base annual LF disturbance products, and attribute code system, to represent the history of disturbance for a 10-year span. Each year's disturbance scenarios are checked against time relevant LF vegetation products to check for logical inconsistencies. Errant codes are flagged and updated to a discard code with the remaining disturbance types cross-walked/aggregated to Fuel Disturbance (FDist) types. HDist includes the year of disturbance that is recorded for that pixel. In LF 2022, the time since disturbance code is the same for both HDist...
thumbnail
LANDFIRE (LF) 2022 Fuel Vegetation Type (FVT) represents the LF Existing Vegetation Type Ecological Systems (EVT) product, modified to represent pre-disturbance EVT in areas where disturbances have occurred over the past 10 years. Due to shifting EVT codes and labels throughout the years, the FVT codes are based on an early version of EVT codes translated from the current version. FVT is an input for fuel transitions related to disturbance. Fuel products in LF 2022 were created with LF 2016 Remap vegetation in non-disturbed areas. To designate disturbed areas where FVT is modified, the aggregated Annual Disturbance products from 2013 to 2022 in the Fuel Disturbance (FDist) product are used. All existing disturbances...
thumbnail
LANDFIRE's (LF) 2022 Forest Canopy Cover (CC) describes the percent cover of the tree canopy in a stand. CC is a vertical projection of the tree canopy cover onto an imaginary horizontal plane. CC supplies information for fire behavior models to determine the probability of crown fire initiation, provide input in the spotting model, calculate wind reductions, and to calculate fuel moisture conditioning. To create this product, plot level CC values are calculated using the canopy fuel estimation software, Forest Vegetation Simulator (FVS). Pre-disturbance CC and Canopy Height (CH) are used as predictors of disturbed CC using a linear regression equation per Fuel Vegetation Type (FVT), disturbance type/severity, and...
thumbnail
LANDFIRE (LF) 2022 Fuel Vegetation Cover (FVC) represents the LF Existing Vegetation Cover (EVC) product, modified to represent pre-disturbance EVC in areas where disturbances have occurred over the past 10 years. EVC is mapped as continuous estimates of canopy cover for tree, shrub, and herbaceous lifeforms with a potential range from 10% to 100%. Continuous EVC values are binned to align with fuel model assignments when creating FVC. FVC is an input for fuel transitions related to disturbance. Fuel products in LF 2022 were created with LF 2016 Remap vegetation in non-disturbed areas. To designate disturbed areas where FVC is modified, the aggregated Annual Disturbance products from 2013 to 2022 in the Fuel Disturbance...
thumbnail
The LANDFIRE (LF) Canadian Forest Fire Danger Rating System (CFFDRS) product depicts fuel types as an identifiable association of fuel elements of distinctive species, form, size, arrangement, and continuity. CFFDRS exhibits characteristic fire behavior under the specified burn conditions. In LF 2022 Canadian fuel models are derived from the Fuel Model Guide to Alaska Vegetation (Alaska Fuel Model Guide Task Group, 2018) and subsequent updates. The LF CFFDRS product contains the fuel models used for the Fire Behavior Prediction (FBP) system fuel type inputs. Default values assigned to the Canadian Fuel Models required to run the Prometheus fire behavior software (Prometheus, 2021) are added as attributes to the...
thumbnail
LANDFIRE's (LF) 2022 Forest Canopy Height (CH) describes the average height of the top of the canopy for a stand. CH is used in the calculation of Canopy Bulk Density (CBD) and Canopy Base Height (CBH). CH supplies information for fire behavior models, such as FARSITE (Finney 1998), that can determine the starting point of embers in the spotting model, wind reductions, and the volume of crown fuels. To create this product, plot level CH values are calculated using the canopy fuel estimation software, Forest Vegetation Simulator (FVS). Pre-disturbance Canopy Cover and CH are used as predictors of disturbed CH using a linear regression equation per Fuel Vegetation Type (FVT), disturbance type/severity, and time since...
thumbnail
LANDFIRE (LF) disturbance products are developed to provide temporal and spatial information related to landscape change. LF 2022 Fuel Disturbance (FDist) uses the latest Annual Disturbance products from the effective disturbance years of 2013 to 2022. FDist is created from LF 2022 Historical Disturbance (HDist) which in turn aggregates the Annual Disturbance products. FDist groups similar disturbance types, severities and time since disturbance categories which represent disturbance scenarios within the fuel environment. FDist is used in conjunction with Fuel Vegetation Type (FVT), Cover (FVC), and Height (FVH) to calculate Canopy Cover (CC), Canopy Height (CH), Canopy Bulk Density (CBD), Canopy Base Height (CBH),...
thumbnail
This dataset contains raster grids of water surface elevation for 15 modeled water-surface profiles at 5 flood frequencies (50- , 10,- 2- , 1- , and 0.2-percent annual exceedance probabilities, or 2- , 10- , 50- , 100- , and 500-year recurrence intervals) and 3 lake levels (representing average conditions, a 2-year-high condition, and a 100-year-high condition).
thumbnail
The travel time map was generated using the Pedestrian Evacuation Analyst model from the USGS. The travel time analysis uses ESRI's Path Distance tool to find the shortest distance across a cost surface from any point in the hazard zone to a safe zone. This cost analysis considers the direction of movement and assigns a higher cost to steeper slopes, based on a table contained within the model. The analysis also adds in the energy costs of crossing different types of land cover, assuming that less energy is expended walking along a road than walking across a sandy beach. To produce the time map, the evacuation surface output from the model is grouped into 1-minute increments for easier visualization. The times in...
This file (wymt_ffa_2018D_WATSTORE.txt) contains peak flow data for peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018. The file is in a text format called WATSTORE (National Water Data Storage and Retrieval System) available from NWISWeb (http://nwis.waterdata.usgs.gov/usa/nwis/peak).
thumbnail
In cooperation with the South Carolina Department of Transportation (SCDOT), the U.S. Geological Survey prepared geospatial layers illustrating the boundaries of the regions used in the South Carolina (SC) Stream Hydrograph Methods presented in Bohman (1990,1992). The region limits were described in written text and depicted in figures in Bohman (1990, 1992), but have not been provided as geospatial layers (due to the age of the original publications). This project used best-available geospatial data from the U.S. Environmental Protection Agency (USEPA) ecoregions (2013) to create equivalent geospatial representations of the Bohman (1990, 1992) region boundaries for the SC Stream Hydrograph Methods. These layers...
thumbnail
This digital elevation model provides a tool for calibrating tsunami risk to observations of the 1945 Makran tsunami in Karachi Harbour. The DEM bathymetry is derived from soundings made mainly during the first eight years after the tsunami. Although deficient in portraying intertidal backwaters and upland topography, the DEM accurately depicts the sheltered setting of one of the two tide gauges that recorded the 1945 tsunami.
thumbnail
Digital flood-inundation maps for a 2.9-square-mile area of Ithaca, New York, were created in 2015–18 by the U.S. Geological Survey in cooperation with the City of Ithaca, New York, and the New York State Department of State. The flood-inundation maps depict estimates of the maximum areal extent and depth of flooding corresponding to selected flood frequencies for Cayuga Inlet, Sixmile Creek, Cascadilla Creek, and Fall Creek and selected water-surface elevations of Cayuga Lake. Flood profiles for the stream reaches were computed by combining a one-dimensional step-backwater model for the stream channels and a two-dimensional model for the overbank areas. The resulting hydraulic model was calibrated by using water-surface...
thumbnail
These datasets are raster files that represent water depths associated with each flood inundation boundary for 157 flooding scenarios in an 8-mile reach of the Papillion Creek near Offutt Air Force Base. These raster files were created by the U.S. Geological Survey (USGS) in cooperation with the U.S. Air Force, Offutt Air Force Base for use within the USGS Flood Inundation Mapping program. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science website at https://www.usgs.gov/mission-areas/water-resources/science/flood-inundation-mapping-fim-program, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgages...
thumbnail
LANDFIRE's (LF) Annual Disturbance products provide temporal and spatial information related to landscape change. Annual Disturbance depicts areas of 4.5 hectares (11 acres) or larger that have experienced a natural or anthropogenic landscape change (or treatment) within a given year. For the creation of the Annual Disturbance product, information sources include national fire mapping programs such as Monitoring Trends in Burn Severity (MTBS), Burned Area Reflectance Classification (BARC) and Rapid Assessment of Vegetation Condition after Wildfire (RAVG), 18 types of agency-contributed "event" perimeters (see LF Public Events Geodatabase), and remotely sensed Landsat imagery. To create the LF Annual Disturbance...
thumbnail
LANDFIRE's (LF) 2022 Canopy Base Height (CBH) supplies information used in fire behavior models to determine the critical point at which a surface fire will transition to a crown fire in conjunction with other environmental factors, such as wind speed and moisture content. CBH data are continuous from 0 to 9.9 meters (to the nearest 0.1m) and describe the lowest point in a stand where there is enough available fuel (0.25in diameter) to propagate fire vertically through the canopy. Critical CBH is defined as the lowest point at which the Canopy Bulk Density (CBD) is .012kg m-3. Under different scenarios of disturbance and based on previous research incorporating plot-level CBH calculations, CBH for disturbed areas...
thumbnail
LANDFIRE (LF) 2022 Fuel Vegetation Height (FVH) represents the LF Existing Vegetation Height (EVH) product, modified to represent pre-disturbance EVH in areas where disturbances have occurred over the past 10 years. EVH is mapped as continuous estimates of canopy height for tree, shrub, and herbaceous lifeforms with a potential range of 0-100m. Continuous EVH values are binned to align with fuel model assignments when creating FVH. FVH is an input for fuel transitions related to disturbance. Fuel products in LF 2022 were created with LF 2016 Remap vegetation in non-disturbed areas. To designate disturbed areas where FVH is modified, the aggregated Annual Disturbance products from 2013 to 2022 in the Fuel Disturbance...


map background search result map search result map Tsunami Evacuation Travel Time Map for Humboldt County, CA, 2010, for Bridges Intact and a Fast Walking Speed Geospatial dataset of flood-inundation maps for Cayuga Inlet, Sixmile Creek, Cascadilla Creek, and Fall Creek at Ithaca, New York Bathymetric and topographic grid intended for simulations of the 1945 Makran tsunami in Karachi Harbour Water surface elevation (NAVD 88) for flood-inundation maps for Cayuga Inlet, Sixmile Creek, Cascadilla Creek, and Fall Creek at Ithaca, New York WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, Part 1 Region Layers for USGS South Carolina Bohman Method Hydrograph in StreamStats WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages on tributaries of the Bighorn, Tongue, and Lower Yellowstone Rivers, based on data through water year 2021 Depth grids of flood inundation maps for Papillion Creek near Offutt Air Force Base, Nebraska LANDFIRE 2022 Fuel Vegetation Cover (FVC) CONUS LANDFIRE 2022 Forest Canopy Cover (CC) CONUS LANDFIRE 2022 Existing Vegetation Cover (EVC) AK LANDFIRE 2022 Fuel Vegetation Height (FVH) AK LANDFIRE 2022 Forest Canopy Height (CH) AK LANDFIRE 2022 Fuel Disturbance (FDist) AK LANDFIRE 2022 Canadian Forest Fire Danger Rating System (CFFDRS) AK LANDFIRE Annual Disturbance AK 2022 WATSTORE Peak-flow frequency analyses for selected streamgages in Carter, Custer, Fallon, Powder River, and Prairie Counties, Montana, based on data through water year 2022 LANDFIRE 2022 Fuel Vegetation Type (FVT) Puerto Rico US Virgin Islands LANDFIRE 2022 Historical Disturbance (HDist) HI LANDFIRE 2022 Forest Canopy Base Height (CBH) HI Water surface elevation (NAVD 88) for flood-inundation maps for Cayuga Inlet, Sixmile Creek, Cascadilla Creek, and Fall Creek at Ithaca, New York Geospatial dataset of flood-inundation maps for Cayuga Inlet, Sixmile Creek, Cascadilla Creek, and Fall Creek at Ithaca, New York Bathymetric and topographic grid intended for simulations of the 1945 Makran tsunami in Karachi Harbour Depth grids of flood inundation maps for Papillion Creek near Offutt Air Force Base, Nebraska WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages on tributaries of the Bighorn, Tongue, and Lower Yellowstone Rivers, based on data through water year 2021 WATSTORE Peak-flow frequency analyses for selected streamgages in Carter, Custer, Fallon, Powder River, and Prairie Counties, Montana, based on data through water year 2022 LANDFIRE 2022 Fuel Vegetation Type (FVT) Puerto Rico US Virgin Islands WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, Part 1 LANDFIRE 2022 Historical Disturbance (HDist) HI LANDFIRE 2022 Forest Canopy Base Height (CBH) HI Region Layers for USGS South Carolina Bohman Method Hydrograph in StreamStats LANDFIRE 2022 Existing Vegetation Cover (EVC) AK LANDFIRE 2022 Fuel Vegetation Height (FVH) AK LANDFIRE 2022 Forest Canopy Height (CH) AK LANDFIRE 2022 Fuel Disturbance (FDist) AK LANDFIRE 2022 Canadian Forest Fire Danger Rating System (CFFDRS) AK LANDFIRE Annual Disturbance AK 2022 LANDFIRE 2022 Fuel Vegetation Cover (FVC) CONUS LANDFIRE 2022 Forest Canopy Cover (CC) CONUS