Skip to main content
Advanced Search

Filters: Types: Map Service (X) > Extensions: Budget (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > Southwest CASC ( Show direct descendants )

50 results (12ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__National and Regional Climate Adaptation Science Centers
___Southwest CASC
Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The 2017 fire season in California was highly unusual with its late seasonal timing, the areal extent it burned, and its devastation to communities. These fires were associated with extreme winds and were potentially also influenced by unusually dry conditions during several years leading up to the 2017 events. This fire season brought additional attention and emphasized the vital need for managers in the western U.S. to have access to scientific information on when and where to expect dangerous fire events. Understanding the multiple factors that cause extreme wildfire events is critical to short and long-term forecasting and planning. Seasonal climate measures such as temperature and precipitation are commonly...
thumbnail
Streamflow in the Colorado River is heavily influenced by high-elevation snowpack. Warming temperatures in spring can reduce snow-fed flows, with serious implications for the water supplies that support communities and wildlife. While it is already well-known that precipitation has a significant influence on river flow, recent observations suggest that temperature and the amount of water in soil may also influence streamflow. In the face of a changing climate, it is important that resource managers understand how factors such as changing temperatures and precipitation will affect this vital water source. To address this need, researchers are examining records of streamflow, temperature, soil moisture, and precipitation...
thumbnail
Drought and wildfire pose enormous threats to the integrity of natural resources that land managers are charged with protecting. Recent observations and modeling forecasts indicate that these stressors will likely produce catastrophic ecosystem transformations, or abrupt changes in the condition of plants, wildlife, and their habitats, in regions across the country in coming decades. In this project, researchers will bring together land managers who have experienced various degrees of ecosystem transformation (from not yet experiencing any changes to seeing large changes across the lands they manage) to share their perspectives on how to mitigate large-scale changes in land condition. The team will conduct surveys...
thumbnail
The distribution and abundance of cheatgrass, an invasive annual grass native to Eurasia, has increased substantially across the Intermountain West, including the Great Basin. Cheatgrass is highly flammable, and as it has expanded, the extent and frequency of fire in the Great Basin has increased by as much as 200%. These changes in fire regimes are associated with loss of the native sagebrush, grasses, and herbaceous flowering plants that provide habitat for many native animals, including Greater Sage-Grouse. Changes in vegetation and fire management have been suggested with the intent of conserving Greater Sage-Grouse. However, the potential responses of other sensitive-status birds to these changes in management...
thumbnail
Forests across the southwestern U.S. are crucial components of recreation and play an important role in state and local economies. Healthy forests also provide needed habitat for many wildlife species and contribute many other important services to our planet. “Hotter droughts” (otherwise normal droughts whose effects on ecosystems are exacerbated by higher temperatures) are an emerging climate change threat to forests with some of their earliest and strongest appearances happening in the Southwest. The Leaf to Landscape project uses California’s unusually hot drought as a potential preview of the future, allowing us to collect information that will help guide forest management in the face of a warming climate....
thumbnail
The fast pace of change in coastal zones, the trillions of dollars of investment in human communities in coastal areas, and the myriad of ecosystem services natural coastal environments provide makes managing climate-related risks along coasts a massive challenge for all of the U.S. coastal states and territories. Answering questions about both the costs and the benefits of alternative adaptation strategies in the near term is critical to taxpayers, decision-makers, and to the biodiversity of the planet. There is significant public and private interest in using ecosystem based adaptation approaches to conserve critical significant ecosystems in coastal watersheds, estuaries and intertidal zones and to protect man-made...
thumbnail
There is increasing and broad recognition of the importance of Indigenous and local knowledge in leading climate change adaptation. Indigenous peoples and nations are on the front lines of climate change impacts, yet they are also leading the way in many innovative adaptation actions, such as traditional or cultural burning practices - a form of low-intensity understory-burning that promotes ecosystem health and builds cultural resilience. The overarching goal of this project is to better understand and establish traditional burning as a robust adaptation strategy, based on the practice’s own merits and/or as a complementary approach to other conventional ecosystem restoration practices. Focusing on central California,...
thumbnail
California - one of the nation's most populous states - hosts extensive public lands, crown-jewel national parks, and diverse natural resources. Resource managers in federal, state, tribal, and local agencies face challenges due to environmental changes and extreme events such as severe droughts, heat waves, flood events, massive wildfires, and forest dieback. However, state-of-the-art research that could aid in the management of natural resources facing these challenges is typically slow to be applied, owing to limited time and capacity on the part of both researchers and managers. This project aims to accelerate the application of science to resource management by facilitating the translation and synthesis of...
thumbnail
A major goal of the Climate Science Center network is to conduct science and develop timely science products and tools that are directly relevant and useful to decision-makers and natural resource managers. A crucial first step in producing this actionable science is understanding the highest priority science and information needs of natural resource managers and planners. Through this project, the Southwest Climate Science Center will conduct a structured rapid assessment to identify and understand manager needs and priorities in the Southwest region. The project team will also work directly with managers and stakeholders to assess their perceptions regarding the co-production of science and preferences on...
thumbnail
The goals of this project were to: (1) produce a state-of-the-art assessment and synthesis of climate change projections, impacts, vulnerabilities, adaptive capacity, and prospects for mitigation and adaptation actions in the Southwest in support of the regional contribution to the National Climate Assessment; (2) develop an inventory of federal partners and stakeholders involved with climate adaptation programs, and (3) forge stronger bonds between the DOI-SW CSC, the three NOAA-RISAs in the Southwest, and the Landscape Conservation Cooperatives.
thumbnail
Resource managers must balance the impacts of competing management decisions on multiple, interacting natural systems. Hydrologic and ecological processes, such as groundwater fluctuations and riparian evapotranspiration, can be tightly coupled. Ideally, managers would have tools and models that include all processes to better understand how each management action would propagate through the environment. Because resources are limited, management tools that include only the most important processes may be more realistic. However, in some cases, omitting some interactions can lead to significant errors in predictions of hydrologic outcomes and ecological function, severely limiting a manager’s ability to identify...
thumbnail
In the dry southwestern United States, snowmelt plays a crucial role as a water source for people, vegetation, and wildlife. However, snow droughts significantly lower snow accumulations, disrupting these critical water supplies for local communities and ecosystems. Despite its large influence on land- and water-resource management, snow drought has only recently been properly defined and its historical distribution and effects on key natural resources are essentially unknown. To remedy this serious knowledge gap, project researchers are examining the causes, effects, and forecastability of snow drought to provide needed scientific information and guidance to planners and decision makers. The central goals of...
thumbnail
The Colorado River is the dominant water source for the southwestern United States, crossing through seven states before reaching Mexico. The river supplies water to approximately 36 million people, irrigates nearly six million acres of farmland within and beyond the basin, and contributes an estimated 26 billion dollars each year to the region’s recreational economy. Yet the Colorado River’s water supply is already fully allocated, meaning that the economic and environmental health of the region is closely tied to the river’s streamflow. Climate projections for the Southwest show a future marked by chronic drought and substantial reductions in streamflow. The region has already been impacted by climate change,...
thumbnail
Big sagebrush plant communities are important and widespread in western North America and are crucial for meeting long-term conservation goals for greater sage-grouse and other wildlife of conservation concern. Yet wildfire is increasing in the West, turning biodiverse, shrub-based ecosystems dominated by sagebrush into grasslands containing invasive species such as cheatgrass and less overall plant and animal diversity. These transformations negatively impact people and ecosystems by reducing habitat quality for wildlife and the aesthetic value of the landscape. Understanding how sagebrush communities are already responding and will continue to respond to changes in wildfire, invasive species, and climate is...
thumbnail
This project links climate, hydrological, and ecological changes over the next 30 years in a Great Basin watershed. In recent years, climate variability on annual and decadal time scales has been recognized as greater than commonly perceived with increasing impacts on ecosystems and available water resources. Changes in vegetation distribution, composition and productivity resulting from climate change affect plant water use, which in turn can alter stream flow, groundwater and eventually available water resources. To better understand these links, project researchers implemented two computer-based numeric models in the Cleve Creek watershed in the Schell Creek Range, east of Ely, Nevada. The application of the...
Categories: Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2013, CASC, Cleve Creek, Climate, Completed, All tags...
thumbnail
The desert grasslands of the southwestern United States support many wildlife species of management concern and economic value. The American pronghorn, for example, is a game species that contributes to local and state economies. Climate extremes, including severe droughts, heat waves, and atmospheric river events, are expected to occur more frequently in the Southwest. These extremes can affect the availability of food and water needed by wildlife. Wildlife management agencies and conservation organizations need information on resource availability for wildlife under future climate scenarios to design effective management strategies to sustain wildlife populations. Project scientists are working with the Arizona...
thumbnail
To understand potential climate change impacts on ecosystems, water resources, and numerous other natural and managed resources, climate change data and projections must be downscaled from coarse global climate models to much finer resolutions and more applicable formats. This project conducted comparative analyses to better understand the accuracy and properties of these downscaled climate simulations and climate-change projections. Interpretation, guidance and evaluation, including measures of uncertainties, strengths and weaknesses of the different methodologies for each simulation, can enable potential users with the necessary information to select and apply the models.
thumbnail
The goal of this project was to: (a) archive the relevant AR5 model output data for the southwest region; (b) downscale daily temperature and precipitation to 12 X 12 km cell spatial resolution over the Southwest; (c) assess the precision (degree of agreement) of the simulated models; (d) assess the direction and magnitude of change in projections between AR4 and AR5, as well as assess projections of key extreme climatic events (i.e., extreme drought, extreme seasonal precipitation, extreme high and low temperature events); and (e) assess critical ecosystem impacts (i.e., climate water deficit and fire; hydrological condition of major river systems; impacts on highly valued species).
thumbnail
In California, the near-shore area where the ocean meets the land is a highly productive yet sensitive region that supports a wealth of wildlife, including several native bird species. These saltmarshes, mudflats, and shallow bays are not only critical for wildlife, but they also provide economic and recreational benefits to local communities. Today, sea-level rise, more frequent and stronger storms, saltwater intrusion, and warming water temperatures are among the threats that are altering these important habitats. To support future planning and conservation of California’s near-shore habitats, researchers examined current weather patterns, elevations, tides, and sediments at these sites to see how they affect...
Categories: Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, Bolinas Lagoon, CA, CASC, California, All tags...
thumbnail
The Salt and Verde river basins in northeastern Arizona are a vital source of fresh water for the greater Phoenix metropolitan area and for two Native American tribes who rely on the basins’ natural resources for their livelihoods. The region depends on winter rain and snow to replenish the river basins’ water supply. Atmospheric rivers – long, narrow channels in the atmosphere that carry water vapor from the Pacific Ocean – supply a substantial portion of this winter precipitation. While atmospheric rivers are critical for maintaining water resources and preventing drought, they occasionally cause extreme storms that lead to flooding. Scientists project that climate change will affect the intensity and frequency...


map background search result map search result map Analysis of Downscaled Climate Simulations and Projections and Their Use in Decision Making for the Southwest Assessment of Available Climate Models and Projections for the Southwest Region Synthesis of Current Science and Assessment of Science Needs for Adaptation in the Southwest Effects of Sea-Level Rise and Extreme Storms on California Coastal Habitats: Part 1 Projecting Future Streamflow in the Colorado River Basin Understanding and Projecting Changes in Climate, Hydrology, and Ecology in the Great Basin for the Next 30 Years Examining the Influence of Temperature and Precipitation on Colorado River Water Resources: Reconstructing the Past to Understand the Future Possible Future Changes to Water Resources in the Salt and Verde River Basins Associated with Atmospheric River Events Assessing the Impacts of Restoration Efforts on Water and Natural Systems in a Changing World Relations Among Cheatgrass, Fire, Climate, and Sensitive-Status Birds across the Great Basin Leaf to Landscape: Understanding and Mapping the Vulnerability of Forests to Hotter Droughts Forecasting Resource Availability for Wildlife Populations in Desert Grasslands under Future Climate Extremes Learning From Recent Snow Droughts to Improve Forecasting of Water Availability for People and Forests Assessing Stakeholder Needs for Effective Actionable Science Big Sagebrush Response to Wildfire and Invasive Grasses in the 21st Century Preventing Extreme Fire Events by Learning from History: The Effects of Wind, Temperature, and Drought Extremes on Fire Activity Improving and Accelerating the Application of Science to Natural Resource Management in California Evaluating Ecosystem-Based Adaptation Options for Coastal Resilience Cultural Burning as a Climate Adaptation Strategy Learning From the Past and Planning for the Future: Experience-Driven Insight Into Managing for Ecosystem Transformations Induced by Drought and Wildfire Understanding and Projecting Changes in Climate, Hydrology, and Ecology in the Great Basin for the Next 30 Years Leaf to Landscape: Understanding and Mapping the Vulnerability of Forests to Hotter Droughts Possible Future Changes to Water Resources in the Salt and Verde River Basins Associated with Atmospheric River Events Examining the Influence of Temperature and Precipitation on Colorado River Water Resources: Reconstructing the Past to Understand the Future Effects of Sea-Level Rise and Extreme Storms on California Coastal Habitats: Part 1 Preventing Extreme Fire Events by Learning from History: The Effects of Wind, Temperature, and Drought Extremes on Fire Activity Improving and Accelerating the Application of Science to Natural Resource Management in California Cultural Burning as a Climate Adaptation Strategy Relations Among Cheatgrass, Fire, Climate, and Sensitive-Status Birds across the Great Basin Projecting Future Streamflow in the Colorado River Basin Learning From the Past and Planning for the Future: Experience-Driven Insight Into Managing for Ecosystem Transformations Induced by Drought and Wildfire Analysis of Downscaled Climate Simulations and Projections and Their Use in Decision Making for the Southwest Assessment of Available Climate Models and Projections for the Southwest Region Forecasting Resource Availability for Wildlife Populations in Desert Grasslands under Future Climate Extremes Assessing Stakeholder Needs for Effective Actionable Science Learning From Recent Snow Droughts to Improve Forecasting of Water Availability for People and Forests Synthesis of Current Science and Assessment of Science Needs for Adaptation in the Southwest Big Sagebrush Response to Wildfire and Invasive Grasses in the 21st Century Evaluating Ecosystem-Based Adaptation Options for Coastal Resilience